
Linux Kernel Hacking Free Course

Kernel hackers’ favorite spot:

The Scheduling Algorithm

Daniel P. Bovet, Marco Cesati



LKHC April 24, 2002 – 1

Talk outline

• What is the scheduler

• The scheduler of Linux 2.4

• The scheduler of Linux 2.5

• Conclusions



LKHC April 24, 2002 – 2

Scheduling in Linux

• Linux is time-shared: multiple processes appear to be simultaneously executed,
even in uniprocessor systems



LKHC April 24, 2002 – 2

Scheduling in Linux

• Linux is time-shared: multiple processes appear to be simultaneously executed,
even in uniprocessor systems

• The effect is achieved by switching from a process to another in a very short time
frame



LKHC April 24, 2002 – 2

Scheduling in Linux

• Linux is time-shared: multiple processes appear to be simultaneously executed,
even in uniprocessor systems

• The effect is achieved by switching from a process to another in a very short time
frame

• The kernel switches to another process when:

– a more important process becomes runnable



LKHC April 24, 2002 – 2

Scheduling in Linux

• Linux is time-shared: multiple processes appear to be simultaneously executed,
even in uniprocessor systems

• The effect is achieved by switching from a process to another in a very short time
frame

• The kernel switches to another process when:

– a more important process becomes runnable

– the current process must block waiting for some event



LKHC April 24, 2002 – 2

Scheduling in Linux

• Linux is time-shared: multiple processes appear to be simultaneously executed,
even in uniprocessor systems

• The effect is achieved by switching from a process to another in a very short time
frame

• The kernel switches to another process when:

– a more important process becomes runnable

– the current process must block waiting for some event

– the current process has exhausted a predefined time quantum



LKHC April 24, 2002 – 2

Scheduling in Linux

• Linux is time-shared: multiple processes appear to be simultaneously executed,
even in uniprocessor systems

• The effect is achieved by switching from a process to another in a very short time
frame

• The kernel switches to another process when:

– a more important process becomes runnable

– the current process must block waiting for some event

– the current process has exhausted a predefined time quantum

• The kernel program that selects the new process to run is named scheduler



LKHC April 24, 2002 – 3

Goals of the Scheduler

A good scheduler must fulfill several conflicting objectives:

• Fast process response time for interactive processes



LKHC April 24, 2002 – 3

Goals of the Scheduler

A good scheduler must fulfill several conflicting objectives:

• Fast process response time for interactive processes

• Good throughput for background jobs



LKHC April 24, 2002 – 3

Goals of the Scheduler

A good scheduler must fulfill several conflicting objectives:

• Fast process response time for interactive processes

• Good throughput for background jobs

• Avoidance of process starvation



LKHC April 24, 2002 – 3

Goals of the Scheduler

A good scheduler must fulfill several conflicting objectives:

• Fast process response time for interactive processes

• Good throughput for background jobs

• Avoidance of process starvation

• Hardware-cache awareness



LKHC April 24, 2002 – 3

Goals of the Scheduler

A good scheduler must fulfill several conflicting objectives:

• Fast process response time for interactive processes

• Good throughput for background jobs

• Avoidance of process starvation

• Hardware-cache awareness

• Fast execution time of the scheduler itself



LKHC April 24, 2002 – 4

Scheduling Policy

• Scheduling policy: the set of rules that determine when and how selecting a new
process to run



LKHC April 24, 2002 – 4

Scheduling Policy

• Scheduling policy: the set of rules that determine when and how selecting a new
process to run

• It is usually based on ranking the processes according to a given priority



LKHC April 24, 2002 – 4

Scheduling Policy

• Scheduling policy: the set of rules that determine when and how selecting a new
process to run

• It is usually based on ranking the processes according to a given priority

• Static priority: a well-defined value assigned to a process, which specifies how
“important” is the computation issued by the process itself



LKHC April 24, 2002 – 4

Scheduling Policy

• Scheduling policy: the set of rules that determine when and how selecting a new
process to run

• It is usually based on ranking the processes according to a given priority

• Static priority: a well-defined value assigned to a process, which specifies how
“important” is the computation issued by the process itself

• Dynamic priority: a continuously changing value that denotes the amount of
system resources (mainly, CPU time) used by the process



LKHC April 24, 2002 – 5

A Process Classification

• I/O-Bound processes: make heavy use of the I/O devices (disks, networks, key-
boards, . . . ), and spend much time while waiting for I/O operations to complete

• CPU-Bound processes: make heavy use of the CPU (“number-crunching” appli-
cations)



LKHC April 24, 2002 – 5

A Process Classification

• I/O-Bound processes: make heavy use of the I/O devices (disks, networks, key-
boards, . . . ), and spend much time while waiting for I/O operations to complete

• CPU-Bound processes: make heavy use of the CPU (“number-crunching” appli-
cations)

Examples:

I/O-bound applications: word processors, database search engines, . . .
CPU-bound applications: compilers, image rendendering engines, . . .



LKHC April 24, 2002 – 6

An Alternative Process Classification

• Interactive processes: interact continuously with the user, and spend a lot of time
waiting for keypresses and mouse events

• Batch processes: do not need user interaction, and often run “in background”
(without terminal focus)

• Real-time processes: have very strong requirements for their response times to
external events



LKHC April 24, 2002 – 6

An Alternative Process Classification

• Interactive processes: interact continuously with the user, and spend a lot of time
waiting for keypresses and mouse events

• Batch processes: do not need user interaction, and often run “in background”
(without terminal focus)

• Real-time processes: have very strong requirements for their response times to
external events

Examples:

interactive applications: word processors, WWW browsers, . . .
batch applications: compilers, database search engines, . . .
real-time applications: video streamers, robot controllers, . . .



LKHC April 24, 2002 – 7

Process Classification in Linux 2.4

• The policy field of the process descriptor (struct task struct, inclu-

de/linux/sched.h) contains:

– SCHED FIFO: First-In First-Out real-time

– SCHED RR: Round-Robin real-time

– SCHED OTHER: non real-time



LKHC April 24, 2002 – 7

Process Classification in Linux 2.4

• The policy field of the process descriptor (struct task struct, inclu-

de/linux/sched.h) contains:

– SCHED FIFO: First-In First-Out real-time

– SCHED RR: Round-Robin real-time

– SCHED OTHER: non real-time

• Other type of processes are not explicitly recognized



LKHC April 24, 2002 – 8

Non Real-Time Process Preemption

Rule 1: Kernel is never preemptible

Any process running in Kernel Mode cannot be replaced
unless it voluntarily relinquishes the CPU



LKHC April 24, 2002 – 8

Non Real-Time Process Preemption

Rule 1: Kernel is never preemptible

Any process running in Kernel Mode cannot be replaced
unless it voluntarily relinquishes the CPU

Rule 2: User Mode processes are always preemptible

Any User Mode process can be replaced when either

• a higher priority process becomes runnable, or

• the process has exhausted a predefined time quantum



LKHC April 24, 2002 – 9

Epoch

• The scheduler divides the CPU time in epochs



LKHC April 24, 2002 – 9

Epoch

• The scheduler divides the CPU time in epochs

• When starting a new epoch, the scheduler assigns a new “personal” time quan-
tum to every process



LKHC April 24, 2002 – 9

Epoch

• The scheduler divides the CPU time in epochs

• When starting a new epoch, the scheduler assigns a new “personal” time quan-
tum to every process

• When a process has exhausted its time quantum, it cannot run anymore until the
epoch terminates



LKHC April 24, 2002 – 9

Epoch

• The scheduler divides the CPU time in epochs

• When starting a new epoch, the scheduler assigns a new “personal” time quan-
tum to every process

• When a process has exhausted its time quantum, it cannot run anymore until the
epoch terminates

• The epoch terminates when all runnable processes have exhausted their time
quantum



LKHC April 24, 2002 – 10

Time Quantum — How Long?

• if it is too long, non-running processes might be freezed for long time



LKHC April 24, 2002 – 10

Time Quantum — How Long?

• if it is too long, non-running processes might be freezed for long time

• if it is too short, too many CPU cycles are “wasted” in Kernel Mode



LKHC April 24, 2002 – 10

Time Quantum — How Long?

• if it is too long, non-running processes might be freezed for long time

• if it is too short, too many CPU cycles are “wasted” in Kernel Mode

A false statement: The shorter the tq, the better the response time of interactive
applications



LKHC April 24, 2002 – 10

Time Quantum — How Long?

• if it is too long, non-running processes might be freezed for long time

• if it is too short, too many CPU cycles are “wasted” in Kernel Mode

A false statement: The shorter the tq, the better the response time of interactive
applications

A true statement: A too long tq degrades the responsiveness of the system



LKHC April 24, 2002 – 10

Time Quantum — How Long?

• if it is too long, non-running processes might be freezed for long time

• if it is too short, too many CPU cycles are “wasted” in Kernel Mode

A false statement: The shorter the tq, the better the response time of interactive
applications

A true statement: A too long tq degrades the responsiveness of the system

Linux’s tq ranges between 10 ms and 300 ms



LKHC April 24, 2002 – 11

Base Time Quantum

• The Base Time Quantum is the default time quantum assigned to a new process



LKHC April 24, 2002 – 11

Base Time Quantum

• The Base Time Quantum is the default time quantum assigned to a new process

• On all architectures, it is roughly equal to 50 ms



LKHC April 24, 2002 – 11

Base Time Quantum

• The Base Time Quantum is the default time quantum assigned to a new process

• On all architectures, it is roughly equal to 50 ms

• The nice() system call can raise or lower the process’ base time quantum



LKHC April 24, 2002 – 11

Base Time Quantum

• The Base Time Quantum is the default time quantum assigned to a new process

• On all architectures, it is roughly equal to 50 ms

• The nice() system call can raise or lower the process’ base time quantum

• On a Intel-based architecture, the base time quantum is:

6− nice/4 ticks

where 1 ticks is about 10 ms and −20 ≤ nice ≤ +19



LKHC April 24, 2002 – 12

How many ticks have been spent in this epoch?

• The counter field of the process descriptor contains the number of ticks left to
the process before its time quantum expires



LKHC April 24, 2002 – 12

How many ticks have been spent in this epoch?

• The counter field of the process descriptor contains the number of ticks left to
the process before its time quantum expires

• A periodic timer interrupt decrements current->counter once every tick



LKHC April 24, 2002 – 12

How many ticks have been spent in this epoch?

• The counter field of the process descriptor contains the number of ticks left to
the process before its time quantum expires

• A periodic timer interrupt decrements current->counter once every tick

• When current->counter becomes 0, the scheduler is invoked



LKHC April 24, 2002 – 12

How many ticks have been spent in this epoch?

• The counter field of the process descriptor contains the number of ticks left to
the process before its time quantum expires

• A periodic timer interrupt decrements current->counter once every tick

• When current->counter becomes 0, the scheduler is invoked

• When counter of all runnable processes is 0, a new epoch starts



LKHC April 24, 2002 – 13

Starting a new epoch

• When starting a new epoch, the scheduler (schedule(), kernel/sched.c) updates
the time quantum of all processes:

for_each_task(p)

p->counter = (p->counter / 2) + (6 - p->nice/4);



LKHC April 24, 2002 – 13

Starting a new epoch

• When starting a new epoch, the scheduler (schedule(), kernel/sched.c) updates
the time quantum of all processes:

for_each_task(p)

p->counter = (p->counter / 2) + (6 - p->nice/4);

• If a process had exhausted its time quantum in the previous epoch, it got a fresh
base time quantum



LKHC April 24, 2002 – 13

Starting a new epoch

• When starting a new epoch, the scheduler (schedule(), kernel/sched.c) updates
the time quantum of all processes:

for_each_task(p)

p->counter = (p->counter / 2) + (6 - p->nice/4);

• If a process had exhausted its time quantum in the previous epoch, it got a fresh
base time quantum

• A suspended process gets a larger time quantum than before (half of the number
of ticks left plus a base time quantum)



LKHC April 24, 2002 – 14

Catching I/O-bound processes

• The number of ticks left in a time quantum (counter) determines also the
dynamic priority of a process



LKHC April 24, 2002 – 14

Catching I/O-bound processes

• The number of ticks left in a time quantum (counter) determines also the
dynamic priority of a process

• The scheduler privileges the I/O-bound processes:

new time quantum = 6− nice/4 + counter/2



LKHC April 24, 2002 – 14

Catching I/O-bound processes

• The number of ticks left in a time quantum (counter) determines also the
dynamic priority of a process

• The scheduler privileges the I/O-bound processes:

new time quantum = 6− nice/4 + counter/2︸ ︷︷ ︸
base time quantum



LKHC April 24, 2002 – 14

Catching I/O-bound processes

• The number of ticks left in a time quantum (counter) determines also the
dynamic priority of a process

• The scheduler privileges the I/O-bound processes:

new time quantum = 6− nice/4 + counter/2︸ ︷︷ ︸
base time quantum

︸ ︷︷ ︸
premium for I/O-bound



LKHC April 24, 2002 – 14

Catching I/O-bound processes

• The number of ticks left in a time quantum (counter) determines also the
dynamic priority of a process

• The scheduler privileges the I/O-bound processes:

new time quantum = 6− nice/4 + counter/2︸ ︷︷ ︸
base time quantum

︸ ︷︷ ︸
premium for I/O-bound

• I/O-bound processes have larger time quantum duration



LKHC April 24, 2002 – 14

Catching I/O-bound processes

• The number of ticks left in a time quantum (counter) determines also the
dynamic priority of a process

• The scheduler privileges the I/O-bound processes:

new time quantum = 6− nice/4 + counter/2︸ ︷︷ ︸
base time quantum

︸ ︷︷ ︸
premium for I/O-bound

• I/O-bound processes have larger time quantum duration
⇒ have higher dynamic priority than CPU-bound processes



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable

text-editor starts sleeping
1 counter=6, sleeping counter=6, running



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable

text-editor starts sleeping
1 counter=6, sleeping counter=6, running
2 counter=6, sleeping counter=5, running



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable

text-editor starts sleeping
1 counter=6, sleeping counter=6, running
2 counter=6, sleeping counter=5, running

· · ·
7 counter=6, sleeping counter=0



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable

text-editor starts sleeping
1 counter=6, sleeping counter=6, running
2 counter=6, sleeping counter=5, running

· · ·
7 counter=6, sleeping counter=0

new epoch starts



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable

text-editor starts sleeping
1 counter=6, sleeping counter=6, running
2 counter=6, sleeping counter=5, running

· · ·
7 counter=6, sleeping counter=0

new epoch starts
7 counter=9, sleeping counter=6, running



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable

text-editor starts sleeping
1 counter=6, sleeping counter=6, running
2 counter=6, sleeping counter=5, running

· · ·
7 counter=6, sleeping counter=0

new epoch starts
7 counter=9, sleeping counter=6, running
8 counter=9, sleeping counter=5, running



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable

text-editor starts sleeping
1 counter=6, sleeping counter=6, running
2 counter=6, sleeping counter=5, running

· · ·
7 counter=6, sleeping counter=0

new epoch starts
7 counter=9, sleeping counter=6, running
8 counter=9, sleeping counter=5, running

keypress in text-editor



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable

text-editor starts sleeping
1 counter=6, sleeping counter=6, running
2 counter=6, sleeping counter=5, running

· · ·
7 counter=6, sleeping counter=0

new epoch starts
7 counter=9, sleeping counter=6, running
8 counter=9, sleeping counter=5, running

keypress in text-editor
8 counter=9, running counter=5, runnable



LKHC April 24, 2002 – 15

A simple example

A text-editor and a number-crunching application are running on a single-processor
machine (nice=0, base time quantum=6 ticks)

Tick I/O-bound CPU-bound
1 counter=6, running counter=6, runnable

text-editor starts sleeping
1 counter=6, sleeping counter=6, running
2 counter=6, sleeping counter=5, running

· · ·
7 counter=6, sleeping counter=0

new epoch starts
7 counter=9, sleeping counter=6, running
8 counter=9, sleeping counter=5, running

keypress in text-editor
8 counter=9, running counter=5, runnable

text-editor starts sleeping
8 counter=9, sleeping counter=5, running



LKHC April 24, 2002 – 16

Dynamic priority

The dynamic priority of a process is computed by the goodness() function (kernel/sched.c):



LKHC April 24, 2002 – 16

Dynamic priority

The dynamic priority of a process is computed by the goodness() function (kernel/sched.c):

goodness(p) = 20− p->nice (base time quantum)



LKHC April 24, 2002 – 16

Dynamic priority

The dynamic priority of a process is computed by the goodness() function (kernel/sched.c):

goodness(p) = 20− p->nice (base time quantum)

+p->current (ticks left in the time quantum)



LKHC April 24, 2002 – 16

Dynamic priority

The dynamic priority of a process is computed by the goodness() function (kernel/sched.c):

goodness(p) = 20− p->nice (base time quantum)

+p->current (ticks left in the time quantum)

+1 (if p uses the page tables of the previous process)



LKHC April 24, 2002 – 16

Dynamic priority

The dynamic priority of a process is computed by the goodness() function (kernel/sched.c):

goodness(p) = 20− p->nice (base time quantum)

+p->current (ticks left in the time quantum)

+1 (if p uses the page tables of the previous process)

+15 (in SMP, if p was last running on the same CPU)



LKHC April 24, 2002 – 17

Selecting the new process to run

schedule() scans the whole list of runnable processes and finds the process
having highest dynamic priority:

c = -1000;

for (each runnable process p) do {

w = goodness(p);

if (w > c)

c = w, next = p;

}



LKHC April 24, 2002 – 17

Selecting the new process to run

schedule() scans the whole list of runnable processes and finds the process
having highest dynamic priority:

c = -1000;

for (each runnable process p) do {

w = goodness(p);

if (w > c)

c = w, next = p;

}

At least one runnable process exists: the so-called swapper kernel thread, having
PID=0



LKHC April 24, 2002 – 18

Hardware caches — 1

Hardware caches are crucial for system performance: processes with “hot cache”
can run up to 100 times faster than processes with “cold cache”



LKHC April 24, 2002 – 18

Hardware caches — 1

Hardware caches are crucial for system performance: processes with “hot cache”
can run up to 100 times faster than processes with “cold cache”

Two types of caches:

• Translation Lookaside Buffers: keeps the physical address associated with a
linear address, as computed by looking at the current page table entries



LKHC April 24, 2002 – 18

Hardware caches — 1

Hardware caches are crucial for system performance: processes with “hot cache”
can run up to 100 times faster than processes with “cold cache”

Two types of caches:

• Translation Lookaside Buffers: keeps the physical address associated with a
linear address, as computed by looking at the current page table entries

• Hardware Memory Cache: keeps the contents of physical memory cells, so as
to avoid a costly access to the RAM chips



LKHC April 24, 2002 – 19

Hardware caches — 2

In general, a process switching:

• Does not force the kernel to invalidate the HMC; however, the new process might
find a “cold cache”



LKHC April 24, 2002 – 19

Hardware caches — 2

In general, a process switching:

• Does not force the kernel to invalidate the HMC; however, the new process might
find a “cold cache”

• Forces the kernel to invalidate the TLBs, because the new process uses a diffe-
rent set of page tables



LKHC April 24, 2002 – 19

Hardware caches — 2

In general, a process switching:

• Does not force the kernel to invalidate the HMC; however, the new process might
find a “cold cache”

• Forces the kernel to invalidate the TLBs, because the new process uses a diffe-
rent set of page tables

Any scheduler should be aware of the hardware caches!



LKHC April 24, 2002 – 20

Preserving the TLBs

The scheduler gives a small goodness bonus to processes that make use of the same
set of page tables as the previously running process



LKHC April 24, 2002 – 20

Preserving the TLBs

The scheduler gives a small goodness bonus to processes that make use of the same
set of page tables as the previously running process

Two fortunate cases:

• The new process is a clone of the previous process



LKHC April 24, 2002 – 20

Preserving the TLBs

The scheduler gives a small goodness bonus to processes that make use of the same
set of page tables as the previously running process

Two fortunate cases:

• The new process is a clone of the previous process

• The new process is a kernel thread, which makes use only of linear addresses
in the fourth gigabyte (identical for all processes)



LKHC April 24, 2002 – 20

Preserving the TLBs

The scheduler gives a small goodness bonus to processes that make use of the same
set of page tables as the previously running process

Two fortunate cases:

• The new process is a clone of the previous process

• The new process is a kernel thread, which makes use only of linear addresses
in the fourth gigabyte (identical for all processes)

In both cases, no change of the set of page table entries is required



LKHC April 24, 2002 – 21

Preserving the HMC

• Modern architectures have several levels of HMC

• The lowest cache level is integrated in the CPU chip (in multiprocessor systems,
the hardware must take care of hardware synchronization)



LKHC April 24, 2002 – 21

Preserving the HMC

• Modern architectures have several levels of HMC

• The lowest cache level is integrated in the CPU chip (in multiprocessor systems,
the hardware must take care of hardware synchronization)

• When a process migrates from a CPU to another, it likely finds a “cold cache”



LKHC April 24, 2002 – 21

Preserving the HMC

• Modern architectures have several levels of HMC

• The lowest cache level is integrated in the CPU chip (in multiprocessor systems,
the hardware must take care of hardware synchronization)

• When a process migrates from a CPU to another, it likely finds a “cold cache”

• The scheduler attempts to “bind” any process to the CPU that has lastly executed
it (+15 bonus in goodness())



LKHC April 24, 2002 – 22

Rescheduling processes

When a process p becomes runnable, the reschedule idle() function
(kernel/sched.c) checks whether any one of the currently running processes should be
preempted.



LKHC April 24, 2002 – 22

Rescheduling processes

When a process p becomes runnable, the reschedule idle() function
(kernel/sched.c) checks whether any one of the currently running processes should be
preempted.

In order of preference:

• p was lastly executing on an idle CPU



LKHC April 24, 2002 – 22

Rescheduling processes

When a process p becomes runnable, the reschedule idle() function
(kernel/sched.c) checks whether any one of the currently running processes should be
preempted.

In order of preference:

• p was lastly executing on an idle CPU

• There is an idle CPU that might execute p (least recently active CPU is choosen,
because it likely has the largest number of invalid HMC lines)



LKHC April 24, 2002 – 22

Rescheduling processes

When a process p becomes runnable, the reschedule idle() function
(kernel/sched.c) checks whether any one of the currently running processes should be
preempted.

In order of preference:

• p was lastly executing on an idle CPU

• There is an idle CPU that might execute p (least recently active CPU is choosen,
because it likely has the largest number of invalid HMC lines)

• There is a CPU that might execute p and whose currently executing process has
smaller dynamic priority than p (the preempted process is the one that maximes
the difference)



LKHC April 24, 2002 – 23

Pitfalls of the Linux 2.4 scheduler

• The scheduler scans the whole list of runnable processes every time it must
perform a process switching



LKHC April 24, 2002 – 23

Pitfalls of the Linux 2.4 scheduler

• The scheduler scans the whole list of runnable processes every time it must
perform a process switching

• Starting a new epoch is expensive



LKHC April 24, 2002 – 23

Pitfalls of the Linux 2.4 scheduler

• The scheduler scans the whole list of runnable processes every time it must
perform a process switching

• Starting a new epoch is expensive

• I/O-bound processes are not boosted when the number of runnable processes
is high (any epoch is quite long)



LKHC April 24, 2002 – 23

Pitfalls of the Linux 2.4 scheduler

• The scheduler scans the whole list of runnable processes every time it must
perform a process switching

• Starting a new epoch is expensive

• I/O-bound processes are not boosted when the number of runnable processes
is high (any epoch is quite long)

• No distinction between interactive processes and batch I/O bound processes



LKHC April 24, 2002 – 23

Pitfalls of the Linux 2.4 scheduler

• The scheduler scans the whole list of runnable processes every time it must
perform a process switching

• Starting a new epoch is expensive

• I/O-bound processes are not boosted when the number of runnable processes
is high (any epoch is quite long)

• No distinction between interactive processes and batch I/O bound processes

• Very roughly distinction between I/O-bound and CPU-bound processes



LKHC April 24, 2002 – 24

The Linux 2.5 O(1) scheduler

• Linux 2.5’s scheduler has been rewritten from scratch



LKHC April 24, 2002 – 24

The Linux 2.5 O(1) scheduler

• Linux 2.5’s scheduler has been rewritten from scratch

• Runs in constant time



LKHC April 24, 2002 – 24

The Linux 2.5 O(1) scheduler

• Linux 2.5’s scheduler has been rewritten from scratch

• Runs in constant time

• Explicitly recognizes processes as being I/O-bound or CPU-bound



LKHC April 24, 2002 – 24

The Linux 2.5 O(1) scheduler

• Linux 2.5’s scheduler has been rewritten from scratch

• Runs in constant time

• Explicitly recognizes processes as being I/O-bound or CPU-bound

• Is still “work in progress” . . .



LKHC April 24, 2002 – 25

Constant time scheduling — 1

• Any CPU has its own runqueue of runnable processes



LKHC April 24, 2002 – 25

Constant time scheduling — 1

• Any CPU has its own runqueue of runnable processes

• Runnable processes migrate from a runqueue to another when the runqueue
lengths are unbalanced



LKHC April 24, 2002 – 25

Constant time scheduling — 1

• Any CPU has its own runqueue of runnable processes

• Runnable processes migrate from a runqueue to another when the runqueue
lengths are unbalanced

• Process migration is HMC aware: least recently active processes are migrated
first



LKHC April 24, 2002 – 26

Constant time scheduling — 2

• Any runqueue consists of several round-robin lists including processes having
the same priority



LKHC April 24, 2002 – 26

Constant time scheduling — 2

• Any runqueue consists of several round-robin lists including processes having
the same priority

• At any timer tick, each CPU decrements the number of tick lefts to the current
process before the time quantum expires



LKHC April 24, 2002 – 26

Constant time scheduling — 2

• Any runqueue consists of several round-robin lists including processes having
the same priority

• At any timer tick, each CPU decrements the number of tick lefts to the current
process before the time quantum expires

• The scheduler is invoked whenever the process has exhausted its time quantum



LKHC April 24, 2002 – 26

Constant time scheduling — 2

• Any runqueue consists of several round-robin lists including processes having
the same priority

• At any timer tick, each CPU decrements the number of tick lefts to the current
process before the time quantum expires

• The scheduler is invoked whenever the process has exhausted its time quantum

• The scheduler always selects the first process in the highest-priority list of the
runqueue



LKHC April 24, 2002 – 27

Recognizing CPU-bound and I/O-bound processes

• The process priority does not depend on the number of ticks left in the time
quantum



LKHC April 24, 2002 – 27

Recognizing CPU-bound and I/O-bound processes

• The process priority does not depend on the number of ticks left in the time
quantum

• If a process goes to sleep, it is rewarded by increasing its priority



LKHC April 24, 2002 – 27

Recognizing CPU-bound and I/O-bound processes

• The process priority does not depend on the number of ticks left in the time
quantum

• If a process goes to sleep, it is rewarded by increasing its priority

• Any process whose priority is higher than a given threshold is recognized as I/O
bound



LKHC April 24, 2002 – 27

Recognizing CPU-bound and I/O-bound processes

• The process priority does not depend on the number of ticks left in the time
quantum

• If a process goes to sleep, it is rewarded by increasing its priority

• Any process whose priority is higher than a given threshold is recognized as I/O
bound

• If a CPU-bound process has exhausted its time quantum, it is inserted in a
expired list, and it is never executed again until the epoch terminates



LKHC April 24, 2002 – 27

Recognizing CPU-bound and I/O-bound processes

• The process priority does not depend on the number of ticks left in the time
quantum

• If a process goes to sleep, it is rewarded by increasing its priority

• Any process whose priority is higher than a given threshold is recognized as I/O
bound

• If a CPU-bound process has exhausted its time quantum, it is inserted in a
expired list, and it is never executed again until the epoch terminates

• If a I/O-bound process has exhausted its time quantum, it receives a fresh time
quantum and it is inserted in the last position of the list associated with its priority



LKHC April 24, 2002 – 28

Hints to beginner kernel hackers

• Start playing with the Linux 2.4 scheduler: the code is much easier to understand
than the 2.5 scheduler



LKHC April 24, 2002 – 28

Hints to beginner kernel hackers

• Start playing with the Linux 2.4 scheduler: the code is much easier to understand
than the 2.5 scheduler

• Add support for measuring scheduler performances and statistics



LKHC April 24, 2002 – 28

Hints to beginner kernel hackers

• Start playing with the Linux 2.4 scheduler: the code is much easier to understand
than the 2.5 scheduler

• Add support for measuring scheduler performances and statistics

• Implement support for interactive processes:

– Add a flag to the process descriptor



LKHC April 24, 2002 – 28

Hints to beginner kernel hackers

• Start playing with the Linux 2.4 scheduler: the code is much easier to understand
than the 2.5 scheduler

• Add support for measuring scheduler performances and statistics

• Implement support for interactive processes:

– Add a flag to the process descriptor

– Implement a system call to let a process declare I’m interactive!



LKHC April 24, 2002 – 28

Hints to beginner kernel hackers

• Start playing with the Linux 2.4 scheduler: the code is much easier to understand
than the 2.5 scheduler

• Add support for measuring scheduler performances and statistics

• Implement support for interactive processes:

– Add a flag to the process descriptor

– Implement a system call to let a process declare I’m interactive!

– Modify the scheduler to properly handle interactive processes



LKHC April 24, 2002 – 28

Hints to beginner kernel hackers

• Start playing with the Linux 2.4 scheduler: the code is much easier to understand
than the 2.5 scheduler

• Add support for measuring scheduler performances and statistics

• Implement support for interactive processes:

– Add a flag to the process descriptor

– Implement a system call to let a process declare I’m interactive!

– Modify the scheduler to properly handle interactive processes

– Compare performances with respect to the vanilla scheduler



LKHC April 24, 2002 – 28

Hints to beginner kernel hackers

• Start playing with the Linux 2.4 scheduler: the code is much easier to understand
than the 2.5 scheduler

• Add support for measuring scheduler performances and statistics

• Implement support for interactive processes:

– Add a flag to the process descriptor

– Implement a system call to let a process declare I’m interactive!

– Modify the scheduler to properly handle interactive processes

– Compare performances with respect to the vanilla scheduler

• Share your changes with others! Who knows . . .


