
Linux Kernel Hacking Free Course, 3rd edition

R. Gioiosa
University of Rome “Tor Vergata”

Real time systems

March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Index

• Introduction

• The simplest real time system

• Micro-kernel RTOS

• Non-micro kernel RTOS

1 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Real time classification

The term real time can have different meaning, depending on the audience and
application. In the computer science literature real time systems are divided in
two main categories:

Soft real time systems are characterized by their ability to execute a task ac-
cording to a desired time schedule on the average.

Hard real time systems must always satisfy timing requirements, quality of ser-
vice, latency constraints, etc.

2 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Real time applications

A typical real time application spends most of its time waiting for external events,
but:

• as soon as the event fires, the system must be ready to resume the real time
application

• the real time application must have all the resources required to complete
its task.

Other non-critical processes may be running at the same time: a time-sharing
system must reach a compromise between real time and non-real time applica-
tions.

3 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Real time constraints

Real time constraints depend on the purpose of the system, in general the fol-
lowing goals should be reached:

• Response time from 100 µs to milliseconds

• Latency from hundreds of microseconds to seconds

• Determinism always!

Having an hard real time system is mainly a matter of determinism!

4 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Real time systems

A real time system is composed by:

1. deterministic hardware

2. a real time OS

Generally speaking hard real time constraints can be met with both dedicated
CPU (Digital Signal Processors, DSP) and OS only.

RTOS must handle problems such as process scheduling, resources allocation,
priority inversion, etc.

5 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

COTS hardware
Commercial Off-The-Shelf (COTS) processors are used for their lower cost and
their widely availability. Their performances tightly depend on:

• virtual memory and its related MMU

• caches (L1, L2, L3, TLB, etc)

• pipeline and speculative execution

• branch prediction

• intelligent bus arbitration (PCI, etc)

A worse case analysis is required to understand if both hardware and software
are sufficiently real time.

6 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Priority inversion
If a low priority task L has got some resources required by a high priority task H,
the critical task might be delayed (priority inversion).

Priority ceiling and priority inheritance avoid this problem. (Do you remember
the Mars Pathfinder failure in 1997?)

7 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

A simple real time system

A simple form of a real time system consists of a dedicated system where the
only running process is the real time application.

A minimal OS (DOS-like), which is able to run only the real time application,
may or may be not present (in the last case the application contains the code
necessary to initialize and to handle the hardware).

When the real time application is not running (waiting for some event) the whole
system is idle.

Even if this solution seems to be reasonable, in most case the real time applica-
tion must live with other non-critical applications: somehow an OS support for a
multi-tasking environment is required.

8 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

RTOS

When OS support is required, there are several approaches:

• micro-kernel (VxWorks, QNX, LynxOS, etc)

• non-micro kernel (RTAI, RTLinux, ASMP Linux, etc.)

9 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Micro-kernel architecture

A common software architecture for RTOS consists of a micro-kernel that exe-
cutes, coordinates and schedules the running processes (both applications and
drivers).

Critical applicationApplicationHTTP server USB

Process manager Flash file system TCP/IP stack Serial

micro−kernel Message
passing bus

The processes communicate with each other and the hardware by means of a
virtual message passing bus.

10 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Micro-kernel characteristics

The main characteristics of micro-kernel architecture are:

• The most fundamental primitives (signals, timers, scheduling, etc) are han-
dled by the kernel itself.

• Drivers, file systems, protocol stacks, user applications, etc. run as separate
processes.

• The processes are scheduled according with their priority (e.g. 0-255) and
the kernel has the highest priority.

Sometimes the MMU is disabled in order to reduce the non-determinism intro-
duced by the TLB, virtual memory, etc. (VxWorks).

11 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Security

Often real time applications are critical for safety and security. The RTOS must
forbid user processes to access others data.

If the MMU is disabled or not present, all the processes and the kernel share the
same address space. The RTOS must provide a mechanism to avoid processes
to access others private data.

If the MMU is enabled, the hardware already protects data accesses (QNX).

However others resources (hardware caches) are shared and must be invali-
dated when switching from a process to another.

12 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Real time in Linux (1)

The official Linux kernel provides some features useful for soft real time systems:

• The scheduler is O(1)

• A process can have a SCHED RR of SCHED FIFO priority

• User processes running in user mode can always be preempted by higher
priority processes

• User processes running in kernel mode may also be preempted (kernel pre-
emption)

13 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Real time in Linux (2)
Process preemption either in user or kernel mode is not a big deal; when the ker-
nel is executing functions not related to any process (interrupt handlers, sched-
uler, etc) it cannot be preempted!

The system goes in kernel mode as a result of:

• system calls

• exceptions

• interrupts

The time spent in kernel mode cannot be predicted and the kernel itself cannot
be controlled, thus Linux kernel cannot be classified as a hard RTOS.

14 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Handling external events

The main problem for Linux is to handle asynchronous events (such as device
interrupts).

Many OSes uses different approaches to solve this problem. We’ll consider:

• The Real Time Application Interface (RTAI)

• The Asymmetric Multiprocessor Linux (ASMP Linux)

15 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Adeos (1)

RTAI is based on Adaptive Domain Environment for Operating Systems; Adeos
allows the user to run different instances of OSes on the same shared hardware.

Each OS runs into a Domain:

• interrupts are sent to all domains according to their domain priority and avail-
ability.

• a scheduler alternates the execution of different domains.

16 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Adeos (2)

Adeos must have complete control of the hardware so it can provide a virtual
abstraction of that hardware to hosted OSes.

Hosted OSes may or may not recognize Adeos; in the second case Adeos must
run transparently to the hosted OS.

Because kernels (such as the Linux kernel) cannot be modified in order to re-
move all the instructions that interacts with the hardware (cli, sti, etc), the
hosted Linux kernel is executed at ring level 1.

17 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Adeos (3)

As soon as the hosted Linux kernel tries to execute a privileged instruction, the
CPU raises an exception and the domain is interrupted.

Then the Adeos exception handler transforms the Assembly instruction into a
logical instruction (cli − > stall).

If a domain is able to talk with Adeos, it can stop the interrupt propagation, so no
more domains will receive the interrupt.

18 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

Real Time Hardware Abstraction Layer
A high priority domain can be implemented to handle the interrupts or to exe-
cute high priority tasks: the RTAI uses this schema to implement its RTHL. Low
priority activities are handled by the next domain where Linux is running.

RTHAL

RTAI

Adeos

Hardware

INT

Domains

Critical task

Interrupt

Low priority

Linux

Others domains

tasks

pipeline

19 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

System latency

The system latency is the time spent by both hardware and software to detect
real time events and to switch to the process that handles that event.

• interrupt latency

• context switch time

sending a byte along the serial port and getting an answer:

L. load H. load
OS Avg. St.dev. Min Max Avg. St.dev. Min Max
Linux 2.6.7 979.83 285.36 568.95 1577.59 1041.25 290.10 568.71 1616.99
RTAI 24.1.13 205.36 3.67 195.58 214.43 205.43 3.68 195.58 219.72
Prop. RTOS 214.72 4.02 203.52 259.29 217.55 11.10 206.14 343.77

20 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

SMP Linux

According to Intel, a MP system is symmetric if it is:

1. Memory symmetric All processors share the same physical memory

2. I/O symmetric Any processors can access the I/O sub-system and handle
interrupts

21 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

ASMP Linux

In an Asymmetric kernel a sub-set of the hardware resources (CPU, devices,
memory, etc) is allocated only for real time applications.

• A selected CPU, (the Asymmetric CPU), only runs real time applications.

• Real time applications should not be blocked by interrupts not related to their
real time activities.

• Hardware caches of the A-CPU must always be preserved, even if real time
applications are sleeping.

• All remaining processes and interrupts must be handled by the others CPUs.

22 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

ASMP Linux: advantages

Using a CPU to perform specific functions of the kernel might yield a better use
of the CPU’s cache and thus better performances with respect to a SMP kernel.

Real-time applications could be run as processes running on a dedicated CPU.

The A-CPU never goes in kernel mode unless the real time application explicitly
ask for it.

A device can be associated with the A-CPU realizing a smart device.

23 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

ASMP Linux: advantages

Interrupts coming from non-real time device (timer, keyboard, etc.) are always
delivered to normal CPUs.

Interrupts coming from the smart device are delivered only to the A-CPU.

24 Real time systems March 29, 2006



Linux Kernel Hacking Free Course, 3rd edition

ASMP Linux: preliminary tests

The ASMP Linux OS has been evaluated measuring the OS latency

25 Real time systems March 29, 2006


