Linux Kernel Hacking Free Course, 3rd edition

Andrea Sarro University of Rome "Tor Vergata"

HWMPS: Hardware Monitor & Protection System

April 5, 2006

Linux Kernel Hacking Free Course, 3rd edition

Project overview

- Project overview
- Developement phases and practical issues

- Project overview
- Developement phases and practical issues
- Hardware platform

- Project overview
- Developement phases and practical issues
- Hardware platform
- Microcontroller firmware

- Project overview
- Developement phases and practical issues
- Hardware platform
- Microcontroller firmware
- Hardware management software

- Project overview
- Developement phases and practical issues
- Hardware platform
- Microcontroller firmware
- Hardware management software
- Future plans

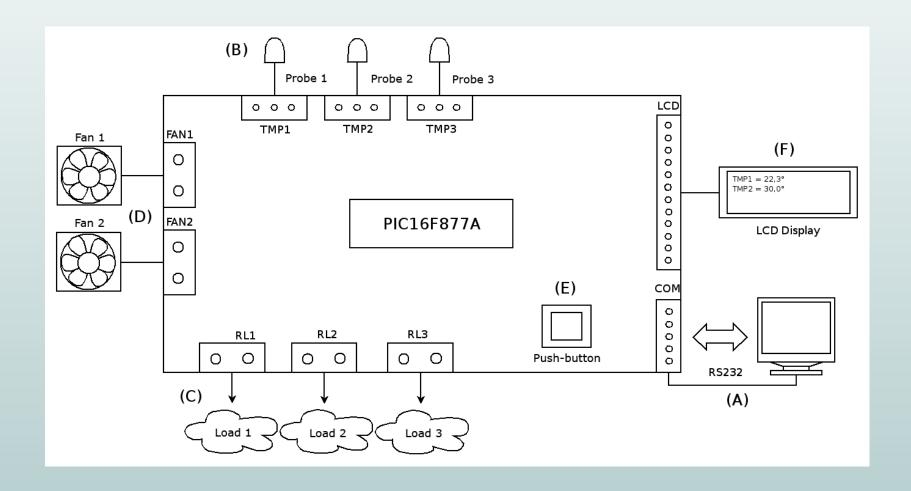
Project Overview

Linux Kernel Hacking Free Course, 3rd edition

 Realize a stand-alone hardware platform for protecting connected electrical devices and monitoring unpredictable and harmful operational states

 Realize a stand-alone hardware platform for protecting connected electrical devices and monitoring unpredictable and harmful operational states

Realize a software platform able to:


- Realize a stand-alone hardware platform for protecting connected electrical devices and monitoring unpredictable and harmful operational states
- Realize a software platform able to:
 - Communicate with the hardware platform

- Realize a stand-alone hardware platform for protecting connected electrical devices and monitoring unpredictable and harmful operational states
- Realize a software platform able to:
 - Communicate with the hardware platform
 - Set operational parameters of the hardware platform

- Realize a stand-alone hardware platform for protecting connected electrical devices and monitoring unpredictable and harmful operational states
- Realize a software platform able to:
 - Communicate with the hardware platform
 - Set operational parameters of the hardware platform
 - Receive status information about connected electrical devices

Hardware platform and interfaces

Hardware platform and interfaces

Linux Kernel Hacking Free Course, 3rd edition

• Monitoring functions:

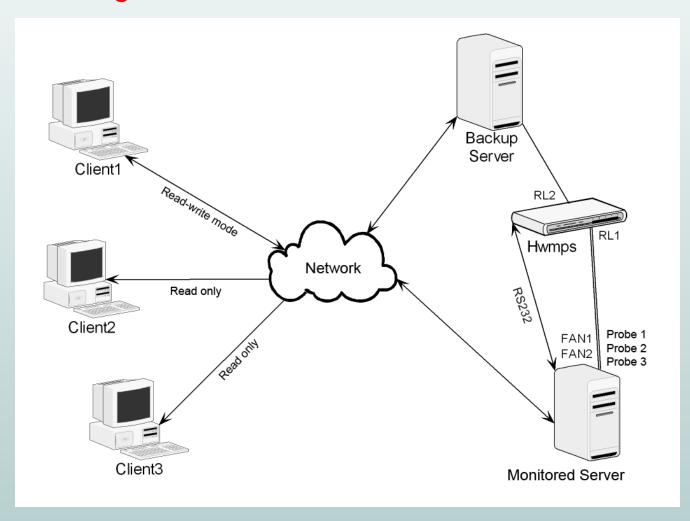
- Monitoring functions:
 - Temperature readings from 3 thermal probes

- Monitoring functions:
 - Temperature readings from 3 thermal probes
 - Status visualization over a 2x16 LCD

- Monitoring functions:
 - Temperature readings from 3 thermal probes
 - Status visualization over a 2x16 LCD
 - Serial communication via RS232 (asynchronous)

- Monitoring functions:
 - Temperature readings from 3 thermal probes
 - Status visualization over a 2x16 LCD
 - Serial communication via RS232 (asynchronous)
- Protection and control functions:

- Monitoring functions:
 - Temperature readings from 3 thermal probes
 - Status visualization over a 2x16 LCD
 - Serial communication via RS232 (asynchronous)
- Protection and control functions:
 - Electrical devices control and protection via 3 realys


- Monitoring functions:
 - Temperature readings from 3 thermal probes
 - Status visualization over a 2x16 LCD
 - Serial communication via RS232 (asynchronous)
- Protection and control functions:
 - Electrical devices control and protection via 3 realys
 - Warning messages via LCD and via software

- Monitoring functions:
 - Temperature readings from 3 thermal probes
 - Status visualization over a 2x16 LCD
 - Serial communication via RS232 (asynchronous)
- Protection and control functions:
 - Electrical devices control and protection via 3 realys
 - Warning messages via LCD and via software
 - Fan speed selection (2 channels)

Linux Kernel Hacking Free Course, 3rd edition

Application background

Application background

Developement phases and practical issues

Linux Kernel Hacking Free Course, 3rd edition

• Hardware developement:

- Hardware developement:
 - Electrical schematic

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board EAGLE Layout Editor

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board EAGLE Layout Editor
- Firmware developement:

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board EAGLE Layout Editor
- Firmware developement:
 - PICMicro firmware

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board EAGLE Layout Editor
- Firmware developement:
 - PICMicro firmware HI-TECH PICC + MPLAB IDE

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board EAGLE Layout Editor
- Firmware developement:
 - PICMicro firmware HI-TECH PICC + MPLAB IDE
 - Firmware simulation

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board EAGLE Layout Editor
- Firmware developement:
 - PICMicro firmware HI-TECH PICC + MPLAB IDE
 - Firmware simulation MPLAB SIM

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board EAGLE Layout Editor
- Firmware developement:
 - PICMicro firmware HI-TECH PICC + MPLAB IDE
 - Firmware simulation MPLAB SIM
- Software developement:

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board EAGLE Layout Editor
- Firmware developement:
 - PICMicro firmware HI-TECH PICC + MPLAB IDE
 - Firmware simulation MPLAB SIM
- Software developement:
 - Cross-platform RS232 Serial Library

- Hardware developement:
 - Electrical schematic EAGLE Schematic Editor
 - Printed circuit board EAGLE Layout Editor
- Firmware developement:
 - PICMicro firmware HI-TECH PICC + MPLAB IDE
 - Firmware simulation MPLAB SIM
- Software developement:
 - Cross-platform RS232 Serial Library
 - Cross-platform client-server hardware management software

Practical issues

Practical issues

Practical issues

So what we need?

• Software:

- Software:
 - Eagle 4.1: http://www.cadsoft.de

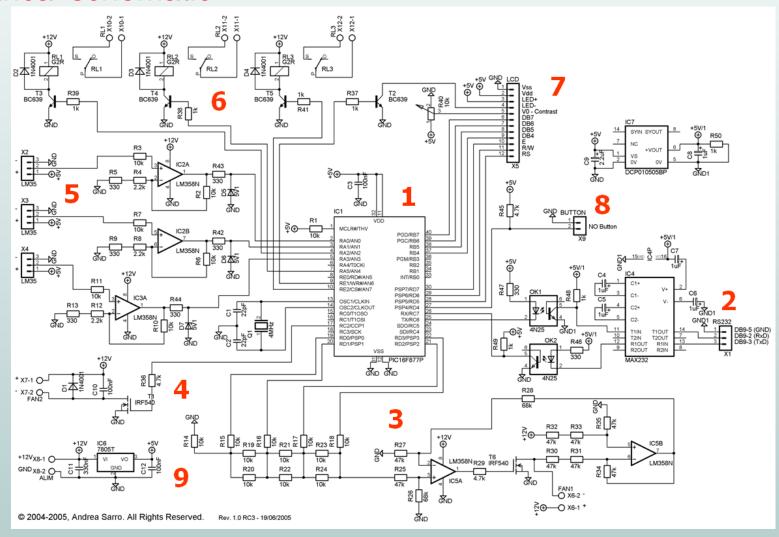
- Software:
 - Eagle 4.1: http://www.cadsoft.de
 - HI-TECH PICC C Compiler: http://www.htsoft.com

- Software:
 - Eagle 4.1: http://www.cadsoft.de
 - HI-TECH PICC C Compiler: http://www.htsoft.com
 - MPLAB IDE: http://www.microchip.com

- Software:
 - Eagle 4.1: http://www.cadsoft.de
 - HI-TECH PICC C Compiler: http://www.htsoft.com
 - MPLAB IDE: http://www.microchip.com
 - GCC compiler + wxWidgets framework: http://www.wxwidgets.org

- Software:
 - Eagle 4.1: http://www.cadsoft.de
 - HI-TECH PICC C Compiler: http://www.htsoft.com
 - MPLAB IDE: http://www.microchip.com
 - GCC compiler + wxWidgets framework: http://www.wxwidgets.org
- Hardware:

- Software:
 - Eagle 4.1: http://www.cadsoft.de
 - HI-TECH PICC C Compiler: http://www.htsoft.com
 - MPLAB IDE: http://www.microchip.com
 - GCC compiler + wxWidgets framework: http://www.wxwidgets.org
- Hardware:
 - PICMicro microcontroller and other electrical components


- Software:
 - Eagle 4.1: http://www.cadsoft.de
 - HI-TECH PICC C Compiler: http://www.htsoft.com
 - MPLAB IDE: http://www.microchip.com
 - GCC compiler + wxWidgets framework: http://www.wxwidgets.org
- Hardware:
 - PICMicro microcontroller and other electrical components
 - UV Light Box and a precoated Photoresist PCB laminate, tools for drilling and soldering

- Software:
 - Eagle 4.1: http://www.cadsoft.de
 - HI-TECH PICC C Compiler: http://www.htsoft.com
 - MPLAB IDE: http://www.microchip.com
 - GCC compiler + wxWidgets framework: http://www.wxwidgets.org
- Hardware:
 - PICMicro microcontroller and other electrical components
 - UV Light Box and a precoated Photoresist PCB laminate, tools for drilling and soldering
 - PICMicro hardware programmer, i.e. MPLAB-ICD2 (this is also an In Circuit Debugger)

Hardware platform

Electrical schematic

Electrical schematic

Electrical schematic - Modules

Electrical schematic - Modules

- 1. Microcontroller (PICmicro MCU)
- 2. RS232 opto-isolated interface
- 3. Digital-Analog Converter (DAC)
- 4. Pulse Width Modulation (PWM)
- 5. Thermal sensors
- 6. Relays
- 7. LCD display
- 8. Push button
- 9. Power supply

Bill of materials

The "core" component is a Microchip PIC16F877A microcontroller

• To be operational it needs these components:

- To be operational it needs these components:
 - 4 MHz Quartz Xtal + two 22 uF ceramic capacitors

- To be operational it needs these components:
 - 4 MHz Quartz Xtal + two 22 uF ceramic capacitors
 - +5V/GND single power supply via LM7805 voltage regulator

- To be operational it needs these components:
 - 4 MHz Quartz Xtal + two 22 uF ceramic capacitors
 - +5V/GND single power supply via LM7805 voltage regulator
 - Pull-up on MCLR pin via a 10 kOhm resistor

Bill of materials (cont'd)

For serial communication we use a MAX232 RS232 driver/receiver.

• For opto-isolation we also need:

- For opto-isolation we also need:
 - DCP010505BP Isolated DC/DC converter (5V input / 5V unregulated output)

- For opto-isolation we also need:
 - DCP010505BP Isolated DC/DC converter (5V input / 5V unregulated output)
 - 4N35 optocoupler, one for RX line and one for TX line

- For opto-isolation we also need:
 - DCP010505BP Isolated DC/DC converter (5V input / 5V unregulated output)
 - 4N35 optocoupler, one for RX line and one for TX line
 - Pull-ups and current limiting resistors for optocouplers, two low ESR capacitors for the DC/DC converter

We also need these other components (oredered by their application field, omitting passive components like resistors)

• Thermal probing:

- Thermal probing:
 - National Semiconductor's LM35 precision integrated-circuit sensors

- Thermal probing:
 - National Semiconductor's LM35 precision integrated-circuit sensors
 - LM358 operational amplifier

- Thermal probing:
 - National Semiconductor's LM35 precision integrated-circuit sensors
 - LM358 operational amplifier
- Fan control:

- Thermal probing:
 - National Semiconductor's LM35 precision integrated-circuit sensors
 - LM358 operational amplifier
- Fan control:
 - IRF540 Power MOSFETs

- Thermal probing:
 - National Semiconductor's LM35 precision integrated-circuit sensors
 - LM358 operational amplifier
- Fan control:
 - IRF540 Power MOSFETs
 - LM358 operational amplifier

Linux Kernel Hacking Free Course, 3rd edition

Bill of materials (cont'd)

• LCD Visualization:

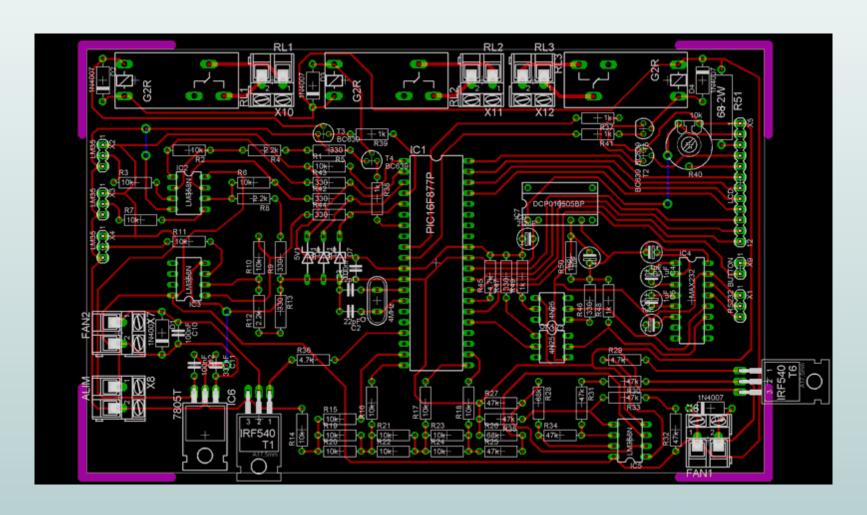
- LCD Visualization:
 - Hitachi HD44780 based LCD or compatible (HD44780 clone)

- LCD Visualization:
 - Hitachi HD44780 based LCD or compatible (HD44780 clone)
 - BC639 NPN transistor for backlight ON/OFF software switching

- LCD Visualization:
 - Hitachi HD44780 based LCD or compatible (HD44780 clone)
 - BC639 NPN transistor for backlight ON/OFF software switching

• Electrical devices control:

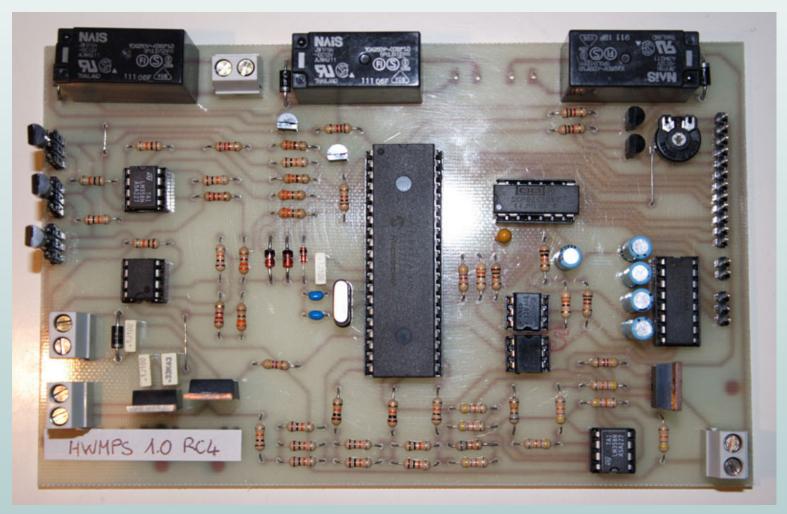
- LCD Visualization:
 - Hitachi HD44780 based LCD or compatible (HD44780 clone)
 - BC639 NPN transistor for backlight ON/OFF software switching


- Electrical devices control:
 - 12V/230V-10A Relays

- LCD Visualization:
 - Hitachi HD44780 based LCD or compatible (HD44780 clone)
 - BC639 NPN transistor for backlight ON/OFF software switching

- Electrical devices control:
 - 12V/230V-10A Relays
 - BC639 NPN transistors

Printed Circuit Board


Printed Circuit Board

Linux Kernel Hacking Free Course, 3rd edition

HWMPS

HWMPS

Microcontroller firmware

Linux Kernel Hacking Free Course, 3rd edition

Microcontroller

A microcontroller can be seen as:

Linux Kernel Hacking Free Course, 3rd edition

Microcontroller

A microcontroller can be seen as: microprocessor

Linux Kernel Hacking Free Course, 3rd edition

Microcontroller

A microcontroller can be seen as: microprocessor +

A microcontroller can be seen as: microprocessor + memory

A microcontroller can be seen as: microprocessor + memory + peripherals

• Microchip PIC16F877A Mid-Range MCU:

- Microchip PIC16F877A Mid-Range MCU:
 - 8 bit microcontroller available in PDIP/40 pin package

- Microchip PIC16F877A Mid-Range MCU:
 - 8 bit microcontroller available in PDIP/40 pin package
 - 8192 words of Program Memory

A microcontroller can be seen as: microprocessor + memory + peripherals

- Microchip PIC16F877A Mid-Range MCU:
 - 8 bit microcontroller available in PDIP/40 pin package
 - 8192 words of Program Memory
 - 368 byte of Data Memory (RAM)

April 5, 2006

- Microchip PIC16F877A Mid-Range MCU:
 - 8 bit microcontroller available in PDIP/40 pin package
 - 8192 words of Program Memory
 - 368 byte of Data Memory (RAM)
 - 256 byte of EEPROM

- Microchip PIC16F877A Mid-Range MCU:
 - 8 bit microcontroller available in PDIP/40 pin package
 - 8192 words of Program Memory
 - 368 byte of Data Memory (RAM)
 - 256 byte of EEPROM
- In this project we use these peripherals:

- Microchip PIC16F877A Mid-Range MCU:
 - 8 bit microcontroller available in PDIP/40 pin package
 - 8192 words of Program Memory
 - 368 byte of Data Memory (RAM)
 - 256 byte of EEPROM
- In this project we use these peripherals:
 - USART (Universal Synchronous Asynchronous Receiver Transmitter)

- Microchip PIC16F877A Mid-Range MCU:
 - 8 bit microcontroller available in PDIP/40 pin package
 - 8192 words of Program Memory
 - 368 byte of Data Memory (RAM)
 - 256 byte of EEPROM
- In this project we use these peripherals:
 - USART (Universal Synchronous Asynchronous Receiver Transmitter)
 - ADC (Analog/Digital Converter)

- Microchip PIC16F877A Mid-Range MCU:
 - 8 bit microcontroller available in PDIP/40 pin package
 - 8192 words of Program Memory
 - 368 byte of Data Memory (RAM)
 - 256 byte of EEPROM
- In this project we use these peripherals:
 - USART (Universal Synchronous Asynchronous Receiver Transmitter)
 - ADC (Analog/Digital Converter)
 - CCP Module (Capture/Compare/PWM)

Linux Kernel Hacking Free Course, 3rd edition

Firmware

HWMPS Firmware has the role of realizing the whole platform features. It's written in C programming language.

The firmware is composed of 4 modules (for more info see attached C sources):

- The firmware is composed of 4 modules (for more info see attached C sources):
 - Delay Library

- The firmware is composed of 4 modules (for more info see attached C sources):
 - Delay Library
 - LCD Library

- The firmware is composed of 4 modules (for more info see attached C sources):
 - Delay Library
 - LCD Library
 - Serial Library

- The firmware is composed of 4 modules (for more info see attached C sources):
 - Delay Library
 - LCD Library
 - Serial Library
 - (Real) Firmware

Linux Kernel Hacking Free Course, 3rd edition

• Serial communication (via interrupts)

- Serial communication (via interrupts)
- Reading thermal sensors, converting 10 bit ADC values into human readable output

- Serial communication (via interrupts)
- Reading thermal sensors, converting 10 bit ADC values into human readable output
- Hardware protection and warning messages notification

- Serial communication (via interrupts)
- Reading thermal sensors, converting 10 bit ADC values into human readable output
- Hardware protection and warning messages notification
- Fan speed thermoregulation

- Serial communication (via interrupts)
- Reading thermal sensors, converting 10 bit ADC values into human readable output
- Hardware protection and warning messages notification
- Fan speed thermoregulation
- LCD visualization

- Serial communication (via interrupts)
- Reading thermal sensors, converting 10 bit ADC values into human readable output
- Hardware protection and warning messages notification
- Fan speed thermoregulation
- LCD visualization
- Saving and loading settings from EEPROM

Hardware management software

Linux Kernel Hacking Free Course, 3rd edition

• Cross-platform (Linux/Windows) library for serial communication

- Cross-platform (Linux/Windows) library for serial communication
- It works in asynchronous non blocking mode

- Cross-platform (Linux/Windows) library for serial communication
- It works in asynchronous non blocking mode
- Written in C++, it defines methods for:

- Cross-platform (Linux/Windows) library for serial communication
- It works in asynchronous non blocking mode
- Written in C++, it defines methods for:
 - Opening the serial port at a chosen baud-rate

- Cross-platform (Linux/Windows) library for serial communication
- It works in asynchronous non blocking mode
- Written in C++, it defines methods for:
 - Opening the serial port at a chosen baud-rate
 - Closing the serial port

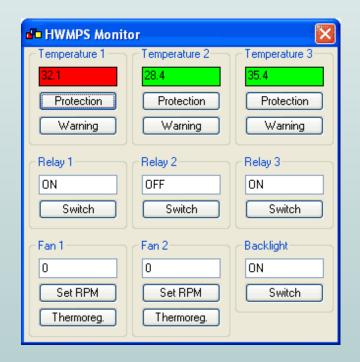
- Cross-platform (Linux/Windows) library for serial communication
- It works in asynchronous non blocking mode
- Written in C++, it defines methods for:
 - Opening the serial port at a chosen baud-rate
 - Closing the serial port
 - Sending data

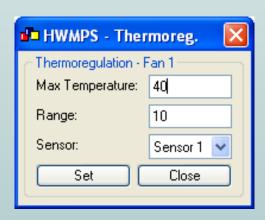
- Cross-platform (Linux/Windows) library for serial communication
- It works in asynchronous non blocking mode
- Written in C++, it defines methods for:
 - Opening the serial port at a chosen baud-rate
 - Closing the serial port
 - Sending data
 - Receiving data in non blocking mode

- Cross-platform (Linux/Windows) library for serial communication
- It works in asynchronous non blocking mode
- Written in C++, it defines methods for:
 - Opening the serial port at a chosen baud-rate
 - Closing the serial port
 - Sending data
 - Receiving data in non blocking mode
 - Verifying serial port status

April 5, 2006

Linux Kernel Hacking Free Course, 3rd edition


HWMPS Monitor


HWMPS Monitor

Cross-platform (Linux/Windows) software for HWMPS management. Written in C++ using wxWidgets library. It's client-server, so it's possible to monitor and control remote devices.

HWMPS Monitor

Cross-platform (Linux/Windows) software for HWMPS management. Written in C++ using wxWidgets library. It's client-server, so it's possible to monitor and control remote devices. The client interface on Windows looks like:

Future plans

 Replacement of LM35 analog sensors with DS18B20 1-Wire digital sensors (in progress!)

- Replacement of LM35 analog sensors with DS18B20 1-Wire digital sensors (in progress!)
- Ethernet interfacing for remote control (now using RS232)

- Replacement of LM35 analog sensors with DS18B20 1-Wire digital sensors (in progress!)
- Ethernet interfacing for remote control (now using RS232)
- RTC for advanced time scheduling functions

- Replacement of LM35 analog sensors with DS18B20 1-Wire digital sensors (in progress!)
- Ethernet interfacing for remote control (now using RS232)
- RTC for advanced time scheduling functions
- Custom boot-loader for on the fly firmware upgrade (via RS232)

- Replacement of LM35 analog sensors with DS18B20 1-Wire digital sensors (in progress!)
- Ethernet interfacing for remote control (now using RS232)
- RTC for advanced time scheduling functions
- Custom boot-loader for on the fly firmware upgrade (via RS232)
- Project Web Site: http://hwmps.sourceforge.net