
Linux Kernel Hacking Free Course, 3rd edition

D. P. Bovet, M. Cesati
University of Rome “Tor Vergata”

An introduction to Linux

January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is Linux

1 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is Linux

• Linux is a POSIX-compliant kernel, although it is not a full Unix-like oper-
ating system because it does not include all the Unix applications, such as
filesystem utilities, windowing systems and graphical desktops, system ad-
ministrator commands, text editors, compilers, and so on

1 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is Linux

• Linux is a POSIX-compliant kernel, although it is not a full Unix-like oper-
ating system because it does not include all the Unix applications, such as
filesystem utilities, windowing systems and graphical desktops, system ad-
ministrator commands, text editors, compilers, and so on

• The GNU project started in 1984, and in particular the gcc compiler/linker
has played a crucial role in the development of Linux

1 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is Linux

• Linux is a POSIX-compliant kernel, although it is not a full Unix-like oper-
ating system because it does not include all the Unix applications, such as
filesystem utilities, windowing systems and graphical desktops, system ad-
ministrator commands, text editors, compilers, and so on

• The GNU project started in 1984, and in particular the gcc compiler/linker
has played a crucial role in the development of Linux

• from the Open Software Foundation website: Variants of the GNU oper-
ating system, which use the kernel Linux, are now widely used; though
these systems are often referred to as Linux, they are more accurately called
GNU/Linux system

1 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Privilege levels

2 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Privilege levels

• Modern computers can run in at least two different modes or privilege levels

2 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Privilege levels

• Modern computers can run in at least two different modes or privilege levels

• This hardware feature has been introduced many years ago to protect the
operating system (OS) from faulty programs and to forbid users to access
some critical I/O devices such as disks

2 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Privilege levels

• Modern computers can run in at least two different modes or privilege levels

• This hardware feature has been introduced many years ago to protect the
operating system (OS) from faulty programs and to forbid users to access
some critical I/O devices such as disks

• In the IA-32 computers, the 16-bit Code Segment register contains 2 bits
that can encode up to 4 different privilege levels: level 0 (most privileged),
level 1, level 2, level 3 (less privileged)

2 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel

3 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel

• The kernel of an OS consists of the set of programs that run in a privileged
level (for IA-32 computers, a level smaller than 3)

3 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel

• The kernel of an OS consists of the set of programs that run in a privileged
level (for IA-32 computers, a level smaller than 3)

• Some kernels such as the kernel of Windows NT use privilege level 0 for the
basic functions and privilege levels 1 and 2 for the I/O drivers

3 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

What is a kernel

• The kernel of an OS consists of the set of programs that run in a privileged
level (for IA-32 computers, a level smaller than 3)

• Some kernels such as the kernel of Windows NT use privilege level 0 for the
basic functions and privilege levels 1 and 2 for the I/O drivers

• Linux uses only 2 privilege levels called User Mode and Kernel Mode

3 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Entering and leaving Kernel Mode

4 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Entering and leaving Kernel Mode

• A User Mode program enters in kernel mode by issuing a special int in-
struction: in Linux, interrupt 0x80 is reserved to implement system calls

4 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Entering and leaving Kernel Mode

• A User Mode program enters in kernel mode by issuing a special int in-
struction: in Linux, interrupt 0x80 is reserved to implement system calls

• Many I/O devices issue interrupts to signal the end of an I/O operation: each
of these interrupts puts the CPU into Kernel Mode

4 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Entering and leaving Kernel Mode

• A User Mode program enters in kernel mode by issuing a special int in-
struction: in Linux, interrupt 0x80 is reserved to implement system calls

• Many I/O devices issue interrupts to signal the end of an I/O operation: each
of these interrupts puts the CPU into Kernel Mode

• The CPU issues special interrupts called exceptions to signal the occur-
rence of abnormal conditions: overflow, page fault, etc.

4 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Entering and leaving Kernel Mode

• A User Mode program enters in kernel mode by issuing a special int in-
struction: in Linux, interrupt 0x80 is reserved to implement system calls

• Many I/O devices issue interrupts to signal the end of an I/O operation: each
of these interrupts puts the CPU into Kernel Mode

• The CPU issues special interrupts called exceptions to signal the occur-
rence of abnormal conditions: overflow, page fault, etc.

• A program in Kernel Mode can put the CPU back in User Mode by executing
the iret (Interrupt Return) instruction

4 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The kernel program

5 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The kernel program

• The kernel is a huge program, which must be compiled and linked before
being loaded in RAM

5 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The kernel program

• The kernel is a huge program, which must be compiled and linked before
being loaded in RAM

• Contrary to ordinary programs (sequential programs), the kernel has the
following main characteristics:

5 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The kernel program

• The kernel is a huge program, which must be compiled and linked before
being loaded in RAM

• Contrary to ordinary programs (sequential programs), the kernel has the
following main characteristics:

– It does not have a single entry point; a different entry point must be
provided for every type of interrupt recognized by the kernel

5 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The kernel program

• The kernel is a huge program, which must be compiled and linked before
being loaded in RAM

• Contrary to ordinary programs (sequential programs), the kernel has the
following main characteristics:

– It does not have a single entry point; a different entry point must be
provided for every type of interrupt recognized by the kernel

– The kernel image produced by the gcc linker cannot be loaded as any
other executable file, simply because the loader is not available when
booting the system: a more rudimentary technique based on bootstrap-
ping must be used

5 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The kernel program

6 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The kernel program

6 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which programming language?

7 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which programming language?

• As all Unix-like OSs, Linux is coded mostly in C

7 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which programming language?

• As all Unix-like OSs, Linux is coded mostly in C

• C is a high-level programming language developed in 1973 by K. Thompson
and D. Ritchie to rewrite a previous version of Unix coded in Assembly

7 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which programming language?

• As all Unix-like OSs, Linux is coded mostly in C

• C is a high-level programming language developed in 1973 by K. Thompson
and D. Ritchie to rewrite a previous version of Unix coded in Assembly

• Some architecture-dependent programs and a few small critical functions
are coded in Assembly (roughly 10% of the code)

7 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which programming language?

• As all Unix-like OSs, Linux is coded mostly in C

• C is a high-level programming language developed in 1973 by K. Thompson
and D. Ritchie to rewrite a previous version of Unix coded in Assembly

• Some architecture-dependent programs and a few small critical functions
are coded in Assembly (roughly 10% of the code)

• To improve portability to new hardware platforms, the architecture-dependent
code is placed in the linux/arch directory

7 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which programming language?

• As all Unix-like OSs, Linux is coded mostly in C

• C is a high-level programming language developed in 1973 by K. Thompson
and D. Ritchie to rewrite a previous version of Unix coded in Assembly

• Some architecture-dependent programs and a few small critical functions
are coded in Assembly (roughly 10% of the code)

• To improve portability to new hardware platforms, the architecture-dependent
code is placed in the linux/arch directory

• A symbolic link called linux/include/asm identifies all the architecture-
dependent header files for a given hardware platform

7 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Non-standard extensions of C

8 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Non-standard extensions of C

• The gnu C compiler includes several non-standard extensions of C exploited
by Linux:

8 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Non-standard extensions of C

• The gnu C compiler includes several non-standard extensions of C exploited
by Linux:

– the inline function qualifier

8 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Non-standard extensions of C

• The gnu C compiler includes several non-standard extensions of C exploited
by Linux:

– the inline function qualifier

– the 64-bit long long data type

8 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Non-standard extensions of C

• The gnu C compiler includes several non-standard extensions of C exploited
by Linux:

– the inline function qualifier

– the 64-bit long long data type

– the attribute ((regparm(3)) function qualifier to pass up to 3
integer parameters using registers instead of the stack
(macro FASTCALL(x))

8 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which kind of Assembly?

9 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which kind of Assembly?

• Very few Assembly files: linux/arch/i386/kernel/entry.S,
linux/arch/i386/kernel/head.S, . . .

9 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which kind of Assembly?

• Very few Assembly files: linux/arch/i386/kernel/entry.S,
linux/arch/i386/kernel/head.S, . . .

• Most of the assembly code is Inline Assembly, that is assembly code em-
bedded in a C function by means of the asm() primitive

9 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which kind of Assembly?

• Very few Assembly files: linux/arch/i386/kernel/entry.S,
linux/arch/i386/kernel/head.S, . . .

• Most of the assembly code is Inline Assembly, that is assembly code em-
bedded in a C function by means of the asm() primitive

• To improve performances, Extended Inline Assembly is used instead of In-
line Assembly

9 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Which kind of Assembly?

• Very few Assembly files: linux/arch/i386/kernel/entry.S,
linux/arch/i386/kernel/head.S, . . .

• Most of the assembly code is Inline Assembly, that is assembly code em-
bedded in a C function by means of the asm() primitive

• To improve performances, Extended Inline Assembly is used instead of In-
line Assembly

• The syntax of Extended Inline Assembly is not obvious

9 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

An example of Extended Inline Assembly code

static inline int _raw_spin_trylock(spinlock_t *lock)

{

char oldval;

__asm__ __volatile__(

"xchgb %b0,%1"

:"=q" (oldval), "=m" (lock->slock)

:"0" (0) : "memory");

return oldval > 0;

}

10 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Expanding the example of Extended Inline Assembly code

xorl %eax, %eax

#APP

xchgb %al,-4(%ebp) ; lock variable stored in -4(%ebp)

#NO_APP

testb %al, %al

setg %al

andl $255, %eax

11 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The addresses of Linux symbols

12 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The addresses of Linux symbols

• Typically, one fourth of the 4 GB address range is reserved to kernel ad-
dresses: all addresses from 0xc0000000 to 0xffffffff are used by
the linker for symbols of the kernel code

12 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The addresses of Linux symbols

• Typically, one fourth of the 4 GB address range is reserved to kernel ad-
dresses: all addresses from 0xc0000000 to 0xffffffff are used by
the linker for symbols of the kernel code

• The lower addresses from 0x00000000 to 0xbfffffff are used by the
linker to link User Mode programs

12 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The addresses of Linux symbols

• Typically, one fourth of the 4 GB address range is reserved to kernel ad-
dresses: all addresses from 0xc0000000 to 0xffffffff are used by
the linker for symbols of the kernel code

• The lower addresses from 0x00000000 to 0xbfffffff are used by the
linker to link User Mode programs

• When linking the kernel, gcc creates a System.map file which lists the ad-
dresses assigned to all global kernel symbols. This file is used by debuggers
and kernel profilers

12 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The size of Linux

13 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The size of Linux

• Linux becomes bigger and bigger, mostly to support new drivers and to sat-
isfy the requirements of enterprise systems

13 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The size of Linux

• Linux becomes bigger and bigger, mostly to support new drivers and to sat-
isfy the requirements of enterprise systems

• Linux 2.2.14 (2000) includes roughly 2 million lines of code

13 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The size of Linux

• Linux becomes bigger and bigger, mostly to support new drivers and to sat-
isfy the requirements of enterprise systems

• Linux 2.2.14 (2000) includes roughly 2 million lines of code

• Linux 2.4.18 (2002) includes roughly 4 million lines of code

13 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The size of Linux

• Linux becomes bigger and bigger, mostly to support new drivers and to sat-
isfy the requirements of enterprise systems

• Linux 2.2.14 (2000) includes roughly 2 million lines of code

• Linux 2.4.18 (2002) includes roughly 4 million lines of code

• Linux 2.6.11 (2005) includes roughly 6 million lines of code

13 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Goals of Linux

14 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Goals of Linux World domination!

14 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Goals of Linux (beside World domination!)

The Linux kernel must provide an execution environment for the users’
applications

14 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Goals of Linux (beside World domination!)

The Linux kernel must provide an execution environment for the users’
applications in such a way to:

• Allow concurrent execution of many applications at the same time
(time sharing)

14 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Goals of Linux (beside World domination!)

The Linux kernel must provide an execution environment for the users’
applications in such a way to:

• Allow concurrent execution of many applications at the same time
(time sharing)

• Arbitrate access to system resources

14 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Goals of Linux (beside World domination!)

The Linux kernel must provide an execution environment for the users’
applications in such a way to:

• Allow concurrent execution of many applications at the same time
(time sharing)

• Arbitrate access to system resources

• Grant protection from misbehaving programs

14 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Goals of Linux (beside World domination!)

The Linux kernel must provide an execution environment for the users’
applications in such a way to:

• Allow concurrent execution of many applications at the same time
(time sharing)

• Arbitrate access to system resources

• Grant protection from misbehaving programs

• Have a small overhead

14 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Goals of Linux (beside World domination!)

The Linux kernel must provide an execution environment for the users’
applications in such a way to:

• Allow concurrent execution of many applications at the same time
(time sharing)

• Arbitrate access to system resources

• Grant protection from misbehaving programs

• Have a small overhead

A process is traditionally defined as an instance of a program in execution (or,
shortly, an execution context)

14 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process vs thread vs lightweight process vs kernel thread

There is no overall agreement over the meaning of these terms

15 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process vs thread vs lightweight process vs kernel thread

There is no overall agreement over the meaning of these terms

We’ll stick to the following definitions:

• A process is an execution context that can be independently scheduled for
execution by the kernel

15 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process vs thread vs lightweight process vs kernel thread

There is no overall agreement over the meaning of these terms

We’ll stick to the following definitions:

• A process is an execution context that can be independently scheduled for
execution by the kernel

• A thread is an execution flow inside a multithreaded application

15 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process vs thread vs lightweight process vs kernel thread

There is no overall agreement over the meaning of these terms

We’ll stick to the following definitions:

• A process is an execution context that can be independently scheduled for
execution by the kernel

• A thread is an execution flow inside a multithreaded application

• A lightweight process is a process that shares with other processes some
critical resources (like physical memory, open files, signal handlers, . . .)

15 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process vs thread vs lightweight process vs kernel thread

There is no overall agreement over the meaning of these terms

We’ll stick to the following definitions:

• A process is an execution context that can be independently scheduled for
execution by the kernel

• A thread is an execution flow inside a multithreaded application

• A lightweight process is a process that shares with other processes some
critical resources (like physical memory, open files, signal handlers, . . .)

• A kernel thread is a process that runs only in Kernel Mode, that is, it never
executes code of users’ applications

15 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process descriptor

The bunch of information kept by the kernel for each process is rooted in a table
called process descriptor

16 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process descriptor

The bunch of information kept by the kernel for each process is rooted in a table
called process descriptor

The process descriptor is a structure of type task struct (or, shortly, task t)
composed by more than 100 fields (see linux/include/linux/sched.h)

16 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process descriptor

The bunch of information kept by the kernel for each process is rooted in a table
called process descriptor

The process descriptor is a structure of type task struct (or, shortly, task t)
composed by more than 100 fields (see linux/include/linux/sched.h)

Many of such fields are pointers to additional tables describing, for instance, the
memory regions, the open files, the signal handlers, . . .

16 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process descriptor

The bunch of information kept by the kernel for each process is rooted in a table
called process descriptor

The process descriptor is a structure of type task struct (or, shortly, task t)
composed by more than 100 fields (see linux/include/linux/sched.h)

Many of such fields are pointers to additional tables describing, for instance, the
memory regions, the open files, the signal handlers, . . .

The current macro yields the address of the descriptor relative to the process
currently executed by the CPU

16 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU

• Runnable, but currently not in execution

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU

• Runnable, but currently not in execution

• Waiting for an event or a signal

• Waiting for an event

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU

• Runnable, but currently not in execution

• Waiting for an event or a signal

• Waiting for an event

• Suspended (frozen)

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU

• Runnable, but currently not in execution

• Waiting for an event or a signal

• Waiting for an event

• Suspended (frozen)

• Terminated

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU
}
TASK RUNNING

• Runnable, but currently not in execution

• Waiting for an event or a signal

• Waiting for an event

• Suspended (frozen)

• Terminated

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU
}
TASK RUNNING

• Runnable, but currently not in execution

• Waiting for an event or a signal TASK INTERRUPTIBLE

• Waiting for an event

• Suspended (frozen)

• Terminated

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU
}
TASK RUNNING

• Runnable, but currently not in execution

• Waiting for an event or a signal TASK INTERRUPTIBLE

• Waiting for an event TASK UNINTERRUPTIBLE

• Suspended (frozen)

• Terminated

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU
}
TASK RUNNING

• Runnable, but currently not in execution

• Waiting for an event or a signal TASK INTERRUPTIBLE

• Waiting for an event TASK UNINTERRUPTIBLE

• Suspended (frozen) TASK STOPPED

• Terminated

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU
}
TASK RUNNING

• Runnable, but currently not in execution

• Waiting for an event or a signal TASK INTERRUPTIBLE

• Waiting for an event TASK UNINTERRUPTIBLE

• Suspended (frozen) TASK STOPPED

• Terminated EXIT ZOMBIE, EXIT DEAD

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

States of a process

The current state of each process is stored in the corresponding descriptor.
The most important process states are the following:

• In execution on a CPU
}
TASK RUNNING

• Runnable, but currently not in execution

• Waiting for an event or a signal TASK INTERRUPTIBLE

• Waiting for an event TASK UNINTERRUPTIBLE

• Suspended (frozen) TASK STOPPED

• Terminated EXIT ZOMBIE, EXIT DEAD

Processes in state TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE are
equivalently said to be sleeping or blocked

17 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The double life of processes

Actually, each process has two distinct lives:

1. when the CPU is in User Mode, the process runs code of the user’s applica-
tion or of a system library

2. when the CPU is in Kernel Mode, the process executes code of the kernel

18 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The double life of processes

Actually, each process has two distinct lives:

1. when the CPU is in User Mode, the process runs code of the user’s applica-
tion or of a system library

2. when the CPU is in Kernel Mode, the process executes code of the kernel

Switching from User Mode to Kernel Mode, or vice versa, does not necessarily
change the current process!

18 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

The double life of processes

Actually, each process has two distinct lives:

1. when the CPU is in User Mode, the process runs code of the user’s applica-
tion or of a system library

2. when the CPU is in Kernel Mode, the process executes code of the kernel

Switching from User Mode to Kernel Mode, or vice versa, does not necessarily
change the current process!

Often we say something like: “the kernel is doing this and that. . . ”; however, we
must never forget that there is always a current process in execution!

18 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process address space

Each process owns a so-called linear address space: basically, it is the set of
linear addresses that can be legally referenced while running in User Mode

19 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process address space

Each process owns a so-called linear address space: basically, it is the set of
linear addresses that can be legally referenced while running in User Mode

Each process has its own mapping between linear addresses and physical ad-
dresses stored in the process’s page tables

19 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process address space

Each process owns a so-called linear address space: basically, it is the set of
linear addresses that can be legally referenced while running in User Mode

Each process has its own mapping between linear addresses and physical ad-
dresses stored in the process’s page tables

Therefore, different processes may use the same linear address with different
meanings; for instance, the linear address 0x800210f0 could be mapped to
the physical address 0x0000d000 for some process and to the physical ad-
dress 0x038af000 for another process

19 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process address space

Each process owns a so-called linear address space: basically, it is the set of
linear addresses that can be legally referenced while running in User Mode

Each process has its own mapping between linear addresses and physical ad-
dresses stored in the process’s page tables

Therefore, different processes may use the same linear address with different
meanings; for instance, the linear address 0x800210f0 could be mapped to
the physical address 0x0000d000 for some process and to the physical ad-
dress 0x038af000 for another process

When running in Kernel Mode every process makes use of linear addresses in
the fourth gigabyte (above 0xc0000000); the mapping of these “kernel” linear
addresses is identical for all processes

19 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process context and interrupt context

As we have seen, the CPU switches to Kernel Mode when either

- a hardware device raises an interrupt, or

- an application triggers an exception or invokes a system call

20 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process context and interrupt context

As we have seen, the CPU switches to Kernel Mode when either

- a hardware device raises an interrupt, or

- an application triggers an exception or invokes a system call

In the first case, we say that the kernel is executing in interrupt context ; in the
second case, we say that the kernel is executing in process context

20 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Process context and interrupt context

As we have seen, the CPU switches to Kernel Mode when either

- a hardware device raises an interrupt, or

- an application triggers an exception or invokes a system call

In the first case, we say that the kernel is executing in interrupt context ; in the
second case, we say that the kernel is executing in process context

While in interrupt context, the kernel cannot make any assumption on the pro-
cess that is currently in execution. In particular, the kernel cannot

• perform a process switch (thus, it cannot start blocking operations)

• reference memory by means of linear addresses below the fourth gigabyte

20 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Asynchronous functions

The functions of the kernel that can be executed in interrupt context are also said
to be asynchronous

21 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Asynchronous functions

The functions of the kernel that can be executed in interrupt context are also said
to be asynchronous

There are several types of asynchronous functions:

• interrupt handlers: each device driver defines an interrupt handler to handle
the interrupts coming from the hardware device

21 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Asynchronous functions

The functions of the kernel that can be executed in interrupt context are also said
to be asynchronous

There are several types of asynchronous functions:

• interrupt handlers: each device driver defines an interrupt handler to handle
the interrupts coming from the hardware device

• deferrable functions (softirqs and tasklets): usually activated by interrupt
handlers, they perform lower priority jobs before returning in process context

21 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Asynchronous functions

The functions of the kernel that can be executed in interrupt context are also said
to be asynchronous

There are several types of asynchronous functions:

• interrupt handlers: each device driver defines an interrupt handler to handle
the interrupts coming from the hardware device

• deferrable functions (softirqs and tasklets): usually activated by interrupt
handlers, they perform lower priority jobs before returning in process context

• timer functions: timers allow to execute arbitrary functions after predefined
delays

21 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Scheduling processes

Linux implements a time sharing system: a slice of the CPU time (the so-called
time quantum) is assigned to each runnable process

22 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Scheduling processes

Linux implements a time sharing system: a slice of the CPU time (the so-called
time quantum) is assigned to each runnable process

The kernel monitors the execution time of the currently running process; when its
time quantum expires, the kernel may replace it with another runnable process

22 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Scheduling processes

Linux implements a time sharing system: a slice of the CPU time (the so-called
time quantum) is assigned to each runnable process

The kernel monitors the execution time of the currently running process; when its
time quantum expires, the kernel may replace it with another runnable process

The scheduler is the kernel program that selects the ‘best” process to run; its
entry point is the schedule() function (see linux/kernel/sched.c)

22 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Scheduling processes

Linux implements a time sharing system: a slice of the CPU time (the so-called
time quantum) is assigned to each runnable process

The kernel monitors the execution time of the currently running process; when its
time quantum expires, the kernel may replace it with another runnable process

The scheduler is the kernel program that selects the ‘best” process to run; its
entry point is the schedule() function (see linux/kernel/sched.c)

Actually, some processes (the so-called real-time processes) are not handled
with the time sharing policy, but with a priority-based FIFO or Round-Robin policy

22 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Preemption

The term preemption denotes the ability of the kernel to replace the currently
running process with another process having higher priority

23 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Preemption

The term preemption denotes the ability of the kernel to replace the currently
running process with another process having higher priority

All modern, general-purpose OSs sport preemptive multitasking, that is, they
have preemptible processes: essentially, when a process runs in User Mode, it
can be replaced at any time by the kernel without regards to what it is doing

23 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Preemption

The term preemption denotes the ability of the kernel to replace the currently
running process with another process having higher priority

All modern, general-purpose OSs sport preemptive multitasking, that is, they
have preemptible processes: essentially, when a process runs in User Mode, it
can be replaced at any time by the kernel without regards to what it is doing

Some OSs, however, are also kernel preemptive: a process can be replaced
even when it executes the code of an exception handler or system call handler
(but never when it executes the code of an interrupt handler!)

23 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Preemption

The term preemption denotes the ability of the kernel to replace the currently
running process with another process having higher priority

All modern, general-purpose OSs sport preemptive multitasking, that is, they
have preemptible processes: essentially, when a process runs in User Mode, it
can be replaced at any time by the kernel without regards to what it is doing

Some OSs, however, are also kernel preemptive: a process can be replaced
even when it executes the code of an exception handler or system call handler
(but never when it executes the code of an interrupt handler!)

Starting from version 2.6, kernel preemption can be enabled or disabled when
compiling the kernel

23 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Virtual memory

The virtual memory subsystem is a core component that allows the kernel to:

• allocate on demand the physical memory required by the users’ applications

24 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Virtual memory

The virtual memory subsystem is a core component that allows the kernel to:

• allocate on demand the physical memory required by the users’ applications

• reclaim physical memory from the users’ applications (in case of memory
shortage)

24 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Virtual memory

The virtual memory subsystem is a core component that allows the kernel to:

• allocate on demand the physical memory required by the users’ applications

• reclaim physical memory from the users’ applications (in case of memory
shortage)

• temporarily put the data of the slow disk devices in RAM (disk caches)

24 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Virtual memory

The virtual memory subsystem is a core component that allows the kernel to:

• allocate on demand the physical memory required by the users’ applications

• reclaim physical memory from the users’ applications (in case of memory
shortage)

• temporarily put the data of the slow disk devices in RAM (disk caches)

The virtual memory subsystem works in chunks of RAM called pages

In IA-32, each page is 4096 bytes long

24 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Support to multiprocessor systems

Several kernel components, such as the scheduler and the memory allocator,
behave differently according to the type of multiprocessor system

25 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Support to multiprocessor systems

Several kernel components, such as the scheduler and the memory allocator,
behave differently according to the type of multiprocessor system:

• Intel CPUs with Hyper-Threading Technology (several logical processing
units on the same chip)

25 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Support to multiprocessor systems

Several kernel components, such as the scheduler and the memory allocator,
behave differently according to the type of multiprocessor system:

• Intel CPUs with Hyper-Threading Technology (several logical processing
units on the same chip)

• Multicore chips (several physical processing units, each with its hardware
caches, on the same chip)

25 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Support to multiprocessor systems

Several kernel components, such as the scheduler and the memory allocator,
behave differently according to the type of multiprocessor system:

• Intel CPUs with Hyper-Threading Technology (several logical processing
units on the same chip)

• Multicore chips (several physical processing units, each with its hardware
caches, on the same chip)

• Non-uniform Memory Access (NUMA) systems (several CPUs, each having
its own local physical memory)

25 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Support to multiprocessor systems

Several kernel components, such as the scheduler and the memory allocator,
behave differently according to the type of multiprocessor system:

• Intel CPUs with Hyper-Threading Technology (several logical processing
units on the same chip)

• Multicore chips (several physical processing units, each with its hardware
caches, on the same chip)

• Non-uniform Memory Access (NUMA) systems (several CPUs, each having
its own local physical memory)

The bottom line is: at any given instant there are several processes in execution

25 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Support to multiprocessor systems

Several kernel components, such as the scheduler and the memory allocator,
behave differently according to the type of multiprocessor system:

• Intel CPUs with Hyper-Threading Technology (several logical processing
units on the same chip)

• Multicore chips (several physical processing units, each with its hardware
caches, on the same chip)

• Non-uniform Memory Access (NUMA) systems (several CPUs, each having
its own local physical memory)

The bottom line is: at any given instant there are several processes in execution

25 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Synchronization, or how to make order out of chaos

When programming the kernel it is crucial to forbid execution flows (asynchronous
functions, exception and system call handlers) to badly interfere with each other
(race conditions)

26 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Synchronization, or how to make order out of chaos

When programming the kernel it is crucial to forbid execution flows (asynchronous
functions, exception and system call handlers) to badly interfere with each other
(race conditions)

Even in uniprocessor systems kernel synchronization is a hard necessity:
kernel preemption and multiprocessor systems just make things worse

26 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Synchronization, or how to make order out of chaos

When programming the kernel it is crucial to forbid execution flows (asynchronous
functions, exception and system call handlers) to badly interfere with each other
(race conditions)

Even in uniprocessor systems kernel synchronization is a hard necessity:
kernel preemption and multiprocessor systems just make things worse

The Linux kernel sports a large number of synchronization primitives: atomic
operations, memory barriers, interrupt disabling, deferrable function disabling,
per-CPU data, semaphores, read/write semaphores, spin locks, read/write spin
locks, Read-Copy-Update (RCU), seqlocks, mutexes (in the forthcoming version
2.6.16), and others

26 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Device driver developer’s easy receipt for synchronization

The large number of synchronization primitives is only due to efficiency reasons:
the kernel must keep the time spent while waiting for a resource to a minimum

As a matter of fact, most synchronization primitives have been introduced in
order to allow some kernel core components to scale well when Linux is used in
large enterprise systems

27 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Device driver developer’s easy receipt for synchronization

The large number of synchronization primitives is only due to efficiency reasons:
the kernel must keep the time spent while waiting for a resource to a minimum

As a matter of fact, most synchronization primitives have been introduced in
order to allow some kernel core components to scale well when Linux is used in
large enterprise systems

Actually, device driver developers can just use a handful of primitives:

1. semaphores (or better mutexes, when they will be available)

27 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Device driver developer’s easy receipt for synchronization

The large number of synchronization primitives is only due to efficiency reasons:
the kernel must keep the time spent while waiting for a resource to a minimum

As a matter of fact, most synchronization primitives have been introduced in
order to allow some kernel core components to scale well when Linux is used in
large enterprise systems

Actually, device driver developers can just use a handful of primitives:

1. semaphores (or better mutexes, when they will be available)

2. spin locks (optionally coupled with interrupt disabling)

27 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Semaphores

Semaphores can be used to protect any data structure that can be accessed
only in process context

28 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Semaphores

Semaphores can be used to protect any data structure that can be accessed
only in process context

In other words, semaphores can be thought as primitives aimed to control the
accesses to the resources shared among the processes in the system

28 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Semaphores

Semaphores can be used to protect any data structure that can be accessed
only in process context

In other words, semaphores can be thought as primitives aimed to control the
accesses to the resources shared among the processes in the system

While a process is waiting on a busy semaphore, it is blocked (put to sleep in
state TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE) and replaced by
another runnable process on the CPU

28 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Semaphores

Semaphores can be used to protect any data structure that can be accessed
only in process context

In other words, semaphores can be thought as primitives aimed to control the
accesses to the resources shared among the processes in the system

While a process is waiting on a busy semaphore, it is blocked (put to sleep in
state TASK INTERRUPTIBLE or TASK UNINTERRUPTIBLE) and replaced by
another runnable process on the CPU

Basically, a semaphore cannot be used in interrupt context!

28 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Using a semaphore as a MUTEX

To allocate a semaphore to be used as a MUTEX (one process at a time):

DECLARE MUTEX(foo semaphore);

29 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Using a semaphore as a MUTEX

To allocate a semaphore to be used as a MUTEX (one process at a time):

DECLARE MUTEX(foo semaphore);

To acquire the semaphore:

down interruptible(&foo semaphore); or
down(&foo semaphore);

29 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Using a semaphore as a MUTEX

To allocate a semaphore to be used as a MUTEX (one process at a time):

DECLARE MUTEX(foo semaphore);

To acquire the semaphore:

down interruptible(&foo semaphore); or
down(&foo semaphore);

To release the semaphore:

up(&foo semaphore);

29 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Spin locks

Spin locks are used to protect data structures that can possibly be accessed in
interrupt context

30 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Spin locks

Spin locks are used to protect data structures that can possibly be accessed in
interrupt context

A spin lock is a MUTEX implemented by an atomic variable having only two
possible values: locked and unlocked

30 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Spin locks

Spin locks are used to protect data structures that can possibly be accessed in
interrupt context

A spin lock is a MUTEX implemented by an atomic variable having only two
possible values: locked and unlocked

When the CPU must acquire a spin lock, it reads the value of the atomic variable
and sets it to locked ; if the variable was already locked before the read-and-set
operation, then the whole step is repeated

30 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Spin locks

Spin locks are used to protect data structures that can possibly be accessed in
interrupt context

A spin lock is a MUTEX implemented by an atomic variable having only two
possible values: locked and unlocked

When the CPU must acquire a spin lock, it reads the value of the atomic variable
and sets it to locked ; if the variable was already locked before the read-and-set
operation, then the whole step is repeated

Therefore, a process waiting for a spin lock is never blocked! (However, if the
kernel is preemptive, the process may be replaced by another runnable process)

30 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Read carefully the instructions before using!

When using spin locks it’s easy to cause deadlocks

31 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Read carefully the instructions before using!

When using spin locks it’s easy to cause deadlocks

Some important points to remember:

• If the data structure protected by the spin lock is accessed also in interrupt
context, we must disable the interrupts before acquiring the spin lock

31 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Read carefully the instructions before using!

When using spin locks it’s easy to cause deadlocks

Some important points to remember:

• If the data structure protected by the spin lock is accessed also in interrupt
context, we must disable the interrupts before acquiring the spin lock

• The kernel automatically disables the kernel preemption once a spin lock
has been acquired

31 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Read carefully the instructions before using!

When using spin locks it’s easy to cause deadlocks

Some important points to remember:

• If the data structure protected by the spin lock is accessed also in interrupt
context, we must disable the interrupts before acquiring the spin lock

• The kernel automatically disables the kernel preemption once a spin lock
has been acquired

• In uniprocessor systems, the atomic variable is not really useful: when com-
piling for uniprocessor systems, that variable is simply optimized away (but
spin lock primitives are still necessary!)

31 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Using a spin lock

To allocate and initialize a spin lock:

spinlock t foo lock;
spin lock init(&foo lock); [unlocked]

32 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Using a spin lock

To allocate and initialize a spin lock:

spinlock t foo lock;
spin lock init(&foo lock); [unlocked]

To disable interrupts and acquire the spin lock:

spin lock irqsave(&foo lock, flags); [locked]

32 An introduction to Linux January 18, 2006

Linux Kernel Hacking Free Course, 3rd edition

Using a spin lock

To allocate and initialize a spin lock:

spinlock t foo lock;
spin lock init(&foo lock); [unlocked]

To disable interrupts and acquire the spin lock:

spin lock irqsave(&foo lock, flags); [locked]

To release the spin lock and restore the previous interrupt status:

spin unlock irqrestore(&foo lock, flags); [unlocked]

32 An introduction to Linux January 18, 2006

