
Linux Kernel Hacking Free Course, 3rd edition

E. Betti
University of Rome “Tor Vergata”

An introduction to I/O drivers

February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Index

The goal of this lecture is to explain:

• what is a driver

• which are the driver’s tasks

In order to do this, we need to introduce some general concepts:

• common programming model

• device file

• file operations

Once this is done, we’ll start discussing how to implement an example driver for
a PCI device. We’ll continue discussing the implementation in the next lecture of
February 22.

1 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Linux Filesystem

In Linux there are several kinds of files: regular files, directories, symbolic links,
FIFOs, sockets, block and char device files.

The device files represent the I/O devices, so each supported I/O device has one
or more corrisponding device files.

The device files are generally located in the /dev directory and created by using
the mknod command, or dinamically by the udev daemon.

A common programming model is used for both regular files and device files.

2 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Common programming model

All Unix kernels, including Linux, have a software layer that handles all system
calls related to a file, such as open(), close(), read(), write(), and so
on . . .

This model hides the differences between device files and regular files. In fact:

• when a process accesses a regular file, it is accessing data blocks on a disk
partition through a filesystem

• when a process accesses a device file, it is just driving a hardware device

. . . but the system calls used are the same!

3 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Class of devices

There are three classes of devices: block device, char device, network interface.
Block and char device files allow to access, respectively:

• block device: disk-like devices, in which data can be accessed by block
number. In most Unix systems, a block device can transfer one or more
blocks at a time (usually 512 bytes or another power of two).

• char device: almost all other devices, in which data can be read and written
as byte streams; random accesses are usually not feasible on char devices

Network cards are special devices that do not have a device file, but are man-
aged by a network interface identified through a unique name (such as eth0)

4 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Major and minor number (1)

All information needed by the filesystem to handle a file is included in a file’s
descriptor called the inode. A device file is identified by a triplet (boolean, integer,
integer) stored in the file’s inode.

The boolean determines whether the file is a character device file or a block
device file. The two integers are the major and minor device numbers.

Traditionally, the major number identifies the driver associated with the device,
even if modern Linux kernels allow multiple drivers to share major numbers.

The minor number identifies which device is being referred to, even if a single
can be referred by more than one device file.

The same major number is used with different meanings for char and block de-
vices.

5 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Major and minor number (2)

With the ls -l command we can see the three values in the device file’s inode.

On my PC with ls -l /dev/hd* /dev/lp* command, I get:

brw-rw---- 1 root disk 3, 0 2006-02-09 17:50 /dev/hda

brw-rw---- 1 root disk 3, 1 2006-02-09 17:50 /dev/hda1

brw-rw---- 1 root disk 3, 2 2006-02-09 17:50 /dev/hda2

brw-rw---- 1 root cdrom 22, 0 2006-02-09 17:50 /dev/hdc

crw-rw---- 1 root lp 6, 0 2006-02-09 17:50 /dev/lp0

↑ ↑ ↑
Block or Char Device ↑ Minor Number

Major number

6 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Major and minor number (3)

The kernel uses the dev t type to hold device numbers. It is a 32 bit variable in
which:

• the first 12 bits are used for the major number (so max 212 = 4096 major
numbers);

• the last 20 bits are used for the minor number (so max 220 = 1048576
minor numbers).

The dev t type must not be handled directly; rather, the programmer must use
some macros as:

MAJOR(dev t dev)
MINOR(dev t dev)
MKDEV(int major, int minor)

7 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

File operations (1)

Linux manages inodes through an inode structure; one of its field is a pointer
to another important structure: the struct file operations.

This structure contains pointers to low level functions that implement the hard-
ware (or filesystem) dependent operations of each of the file’s system calls.

struct file_operations {

loff_t (*llseek) (struct file *, loff_t, int);

ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);

int (*open) (struct inode *, struct file *);

int (*release) (struct inode *, struct file *);

/* ...and many other fields... */

};

8 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

File operations (2)

Each driver must implement the proper file operations for its device file and store
the pointers to these functions into a struct file operations.

Linux ensures that the inode of a device file includes a pointer to the struct

file operations filled by the device driver.

Each system call acting on that device file triggers the execution of a file opera-
tion provided by the device driver.

9 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

What is a driver?

A driver is a set of programs that makes a hardware device respond to the pro-
gramming interface defined by the file operations.

Each hardware device has:

• a standard interface (such as a PCI interface)

• a device-specific interface

In general, the standard interface is controlled directly by kernel core functions.

The device-specific interface must be controlled by a dedicated software that
knows each device features, that is, by the device driver.

10 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Driver’s tasks

1. register itself on the software layer of the hosting bus

2. probe for compatible devices

3. for each device found, obtain its resources

4. initialize the device

5. register itself as a driver for block or char device, thus assigning to the device
a major and minor number. To make this a driver must:

6. implement the file operations of the device file

7. manage the operations of the device

11 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Driver’s tasks (2)

Moreover, if the driver is a module or if the device supports hotplugging:

8. deregister the device file

9. release the resources

10. deregister itself from the bus software layer

In the remaining part of this lecture we’ll show how to implement steps 1, 2, 3, 9,
and 10 for a generic driver of a PCI device.

12 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

An example driver

For the sake of concreteness, we refer to a Galil DMC 1800 motion controller.

In particular we’ll see:

• how to register a PCI driver

• how to probe a PCI device

• how to get resources for a PCI device

• how to release the resources

• how to unregister a PCI driver

13 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 1 - Register PCI driver (1)

In order to register a PCI device, the developer must allocate and initialize two
structures: an array of struct pci device id (the last element must be
zeroed) and a struct pci driver.

struct pci device id is used to identify each PCI-compatible device by
matching some fields of the PCI configuration space.

struct pci_device_id {

__u32 vendor, device; /* Vendor and device ID or PCI_ANY_ID */

__u32 subvendor, subdevice; /* Subsystem ID’s or PCI_ANY_ID */

__u32 class, class_mask; /* (class,subclass,prog-if) triplet */

kernel_ulong_t driver_data; /* Data private to the driver */

};

14 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

PCI configuration space for a generic device

0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7
0x00 Vendor ID Device ID Command reg. Status reg.
0x08 RI Class Code CL LT HT (=0) BIST
0x10 Base address 0 Base address 1
0x18 Base address 2 Base address 3
0x20 Base address 4 Base address 5
0x28 Card Bus CIS Pointer Subsystem

vendor ID
Subsystem
device ID

0x30 Expansion ROM base address CP Reserved
0x38 Reserved IL IP MG ML

RI=Revision ID, CL=Cache Line, LT=Latency Timer, HT=Header Type, BIST=Built-In Self Test,
CP=Capabilities Pointer, IL=IRQ Line, IP=IRQ Pin, MG=MIN GNT, ML=MAX LAT

15 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

PCI Configuration space for Galil DMC 1800

With the lspci -vvx command you get the list of PCI devices recognized by
the kernel and a dump of their PCI configuration spaces.

00:0a.0 Class ff00: PLX Technology, Inc. PCI <-> IOBus Bridge (rev 02)

Subsystem: I-Bus: Unknown device 1800

/* ...other information... */

Interrupt: pin A routed to IRQ 18

Region 0: Memory at ee000000 (32-bit, non-prefetchable) [size=128]

Region 2: I/O ports at e800 [size=16]

00: b5 10 50 90 03 00 80 02 02 00 00 ff 08 00 00 00

10: 00 00 00 ee 00 00 00 00 01 e8 00 00 00 00 00 00

20: 00 00 00 00 00 00 00 00 00 00 00 00 79 10 00 18

30: 00 00 00 00 00 00 00 00 00 00 00 00 09 01 00 00

16 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 1 - Register PCI driver (2)
Filling the struct pci device id for the Galil DMC 1800:

struct pci_device_id galil1800_idtable[] = {

{ .vendor = 0x10B5,

.device = 0x9050,

.subvendor = 0x1079,

.subdevice = 0x1800,

.class = 0,

.class_mask = 0,

.driver_data = 0 },

{ 0, }

};

If the driver supports more than one device, this array contains one struct
pci device id for each supported device.

17 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 1 - Register PCI driver (3)

struct pci driver defines some functions to handle some events and a
pointer to the pci device id table.

struct pci_driver {

char *name;

const struct pci_device_id *id_table;

int (*probe) (struct pci_dev *dev, const struct pci_device_id *id);

void (*remove) (struct pci_dev *dev);

int (*suspend) (struct pci_dev *dev, pm_message_t state);

int (*resume) (struct pci_dev *dev);

/* ...and other fields... */

};

18 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 1 - Register PCI driver (4)

struct pci driver for this first version of Galil DMC 1800 driver:

struct pci_driver galil1800_driver = {

.name = "galil1800",

.id_table = galil1800_idtable,

.probe = NULL,

.remove = NULL,

.suspend = NULL,

.resume = NULL,

.enable_wake = NULL,

.shutdown = NULL

};

19 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 1 - Register PCI driver (5)

A minimal init function for initializing the module of our driver could be:

int __init galil1800_init(void)

{

return pci_register_driver(&galil1800_driver);

}

. . . where galil1800 driver is the instance of the struct pci driver

properly initialized, and pci register driver() is a function exported by
the PCI sofware layer of the Linux kernel.

20 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 10 - Unregister PCI driver

A minimal exit function for terminating the module of our driver could be:

void __exit galil1800_cleanup(void)

{

pci_unregister_driver(&galil1800_driver);

}

. . . where galil1800 driver is the instance of the struct pci driver

properly initialized, and pci unregister driver() is a function exported
by the PCI software layer of the Linux kernel.

21 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 2 - Probe for PCI devices

Once PCI registration is done, the kernel knows from the pci device id table
the devices that can be controlled by the driver.

For each compatible device found in the system, the kernel calls the function
pointed by the probe field of struct pci driver.

If a device is already present when the module is loaded, the kernel calls the
probe function immediately.

When the module is unloaded or a device is disconnected, the kernel calls the
function pointed by the remove field of struct pci driver.

22 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 3 - Obtain resources for PCI devices (1)

To learn about the resources used by the PCI device, we can read the device’s
datasheet or we can issue the lspci -vvx command.

The Galil DMC 1800 card has an I/O port described at Base Address Register 2
and an I/O memory described at Base Address Register 0.

The driver usually obtains the resources of the devices found in the system by
implementing the corresponding probe function.

The probe function accepts as argument a pointer to a struct pci dev.
This structure is allocated by kernel, one for each PCI device, and contains all
information required to obtain device’s resources. In order to read its fields, the
driver must use some specific macros.

23 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 3 - Obtain resources for PCI devices (2)

This function reads the address stored in the Base Address Register bar:
pci resource start(struct pci dev *pcidev, int bar)

This function reads the resource size pointed by the Base Address Register bar:
pci resource len(struct pci dev *pcidev, int bar)

This function requests I/O ports from address to address + size. Tipically
name is driver’s name:
struct resource *request region(unsigned long address,

unsigned long size, const char *name)

To see the I/O ports and the corresponding drivers: cat /proc/ioports

24 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 3 - Obtain resources for PCI devices (3)

This function requests I/O memory from address to address + size. Tipi-
cally name is driver’s name:
struct resource *request mem region(unsigned long address,

unsigned long size, const char *name)

To see the I/O memory regions and the corresponding drivers: cat /proc/iomem

The I/O memory address read from PCI configuration space is a phisical ad-
dress. To access this memory area we needs a linear address; to obtain a linear
address, use this function:
void *ioremap(unsigned long phis address,

unsigned long size)

25 An introduction to I/O drivers February 15, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 9 - Release resources

When the module is unloaded or the device is unplugged, the remove function
(pointed by a field of struct pci driver) is called.

This function must release the resources obtained by the driver. To do this:

• to release I/O ports:
release region(unsigned long address,

unsigned long size)

• to release I/O memory:
iounmap(void *virtual address)
release mem region(unsigned long phis address,

unsigned long size)

26 An introduction to I/O drivers February 15, 2006


