
Linux Kernel Hacking Free Course, 3rd edition

E. Betti
University of Rome “Tor Vergata”

Drivers for character devices

February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Summary of the previous lecture
In the previous lecture we have seen:

• what is a driver

• which are the driver’s tasks

• how to implement some of this tasks on a PCI device (Galil DMC 1800
controller):

1. how to register a driver on the software layer of the hosting bus

2. how to probe for compatible devices

3. how to list the resources used by each device found

9. how to release the resources obtained by a driver

10. how to deregister a driver from the bus software layer

1 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Outline

In this lecture we first introduce the functions used to comunicate with an I/O
device, we’ll then continue working on the example introduced in the previous
lecture and we’ll show how to:

4. initialize the device (in our example, the Galil DMC 1800 controller)

5. register a driver for this char device, thus assigning to it a major and minor
number. To make this we must:

6. implement the file operations of the device file

7. manage the operations of the device

8. deregister the device file

2 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Comunicating with an I/O device

Tipically, a device is controlled by writing and reading its registers. Those reg-
isters are accessed either in the memory address space (I/O memory) or in the
I/O address space (I/O ports).

In the previous lecture we have seen how to obtain the starting address of the
I/O memory and the address of the first I/O port; we have also seen how to tell
the kernel that the driver will make use of those resources.

Now, we’ll discuss the basic functions needed to comunicate with a device through
I/O memory or I/O ports.

3 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Comunicating with a device: I/O port
An I/O port can have different sizes, thus different C functions must be used to
access different port sizes:

• 8 bit wide port:
unsigned inb(unsigned port) to read,
void outb(unsigned char byte, unsigned port) to write.

• 16 bit wide port:
unsigned inw(unsigned port) to read,
void outw(unsigned short word, unsigned port) to write.

• 32 bit wide port:
unsigned inl(unsigned port) to read,
void outl(unsigned longword, unsigned port) to write.

4 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Comunicating with a device: I/O memory
Although ioremap() yields virtual address, direct use of pointers to I/O mem-
ory is discouraged. The safe way to access I/O memory is through the following
functions:
unsigned int ioread8(void *addr)
unsigned int ioread16(void *addr)
unsigned int ioread32(void *addr)
void iowrite8(u8 value, void *addr)
void iowrite16(u16 value, void *addr)
void iowrite32(u32 value, void *addr)
To operate on a block of I/O memory:
memset io(void *addr, u8 value, unsigned int count)
memcpy fromio(void *dest, void *src, unsigned int count)
memcpy toio(void *dest, void *src, unsigned int count)

5 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Comunicating with the Galil DMC 1800 device

To develop a driver for a device, we need to read the device’s datasheet to know
how to comunicate with that device.

So, to continue with the example of the previous lecture, we first need to explain
somethings about how to comunicate with our test device, the Galil DMC 1800.
In the next slide, I’ll introduce a schematic rapresentation of that device. You
should refer to that slide to get a better understanding of the code for some
basic low level operations of the Galil DMC 1800.

You can find the complete device’s datasheet at www.galilmc.com.

6 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

secondary
FIFO

I/O port at
BAR2+0x0

IRQ/RS I/O port

at BAR2+0x8

Control I/O port
at BAR2+0x4

IRQ

I/O APIC CPU

read
FIFO

FIFO
write

I/O port at BAR2+0xC

4 Mb of Flash EEPROM

Motorola 68331

with 4 Mb of RAM and

Galil DMC 1800

Bus PCI

Dual Port RAM for sec. FIFO

I/O Memory at BAR0

RAM

Galil
DMC
1800

7 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 4. Initializing the device

This step is really device-dependent; also in this case, the operations that must
be performed can be found in the device’s datasheet.

To simplify the example we only perform two simple actions:

• reset the read and write buffers through the control I/O port;

• perform a global reset of the controller by putting a specific command in the
write FIFO.

8 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 5. Registering the driver for a char device (1)

If a driver wants register itself for one or more character devices, first of all, it
needs to obtain a range of device numbers.

If you know exactly which device numbers you want, you can use:
int register chrdev region(dev t first,

unsigned int count, char *name)

Tipically, however, you don’t know which major device number you device can
use, so you can let the kernel choose for you by calling:
int alloc chrdev region(dev t *dev,

unsigned int firstminor, unsigned int count, char *name)

The /proc/devices file lists the current associations between major numbers
and device drivers.

9 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 5. Registering the driver for a char device (2)

The kernel describe a character device through a struct cdev structure.

This data structure has a pointer to the struct file operations of the
device, so to complete the device’s registration, we need to implement the file
operations and to initialize a struct file operations for the device. We’ll
do this later in this lecture.

The struct cdev structure can be initialized by calling:
void cdev init(struct cdev *cdev,

struct file operations *fops)

Finally, to inform the kernel about the new char device we can use:
int cdev add(struct cdev *cdev, dev t num,

unsigned int count)

10 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 8. Deregistering the device file

When the driver module is unloaded or when the device is not more available
the device file must be deregistered. At this scope we must use:

void cdev del(struct cdev *dev)

To release also the device numbers obtained with alloc chrdev region(...)

or with register chrdev region(...), we must use:

unregister chrdev region(dev t first,

unsigned int count)

11 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 6. Implementing the file operations for a device file (1)
To any function that operates on a file is passed a pointer to a data structure,
called file, that describes an opened file. This structure is created by the
kernel when a file is opened and it is removed when a file is closed.
Some interesting fields are:

• mode t f mode: read/write permission flags, set by FMODE READ and
FMODE WRITE macro

• unsigned int f flags: other flags, such as O RDWR, O NONBLOCK,. . .

• struct file operations *f op: a pointer to the
struct file operations of the file

• void *private data: this field is initilized to NULL and can be used to
specific driver data

12 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 6. Implementing the file operations for a device file (2)

Some file operations, such as open and release, accept as argument a pointer
to the struct inode that describe the device file. In general, writing a driver,
two fields of inode structure are interesting:

• dev t i rdev: contain the device number

• struct cdev *i cdev: pointer to struct cdev passed to
cdev add(...) function.

Generally, other details on how to implement the file operations are device-
dependent. We will see an example for the Galil DMC 1800 device.

13 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Step 7. Managing the operations of an I/O device

Besides implementing the file operations, device drivers must control the termi-
nation of each I/O operation.

If your device issues interrupts on an interrupt line, its driver must include an
interrupt handler to handle each interrupt raised.

Handling an interrupt means associate with an IRQ (Interrupt ReQuest) number
a function that will be called for each interrupt raised on the registred channel.

This function, which typically performs some device-dependent operations, must
respect some restrictions: because it runs in atomic context, it can’t call any
functions that could block and can’t access the User Mode address space.

14 Drivers for character devices February 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Interrupt

To request an IRQ you must know the IRQ number associated with the device.
For a PCI device we can get it from the struct pci dev structure that de-
scribes the device: the field’s name is irq. Then we can request it to the kernel:
int request irq(unsigned int irq,

irqreturn t(*handler)(int,void*,struct pt regs*),
unsigned long flags, const char *dev name, void *dev id)

To release the IRQ:
void free irq(unsigned int irq, void *dev id)

The /proc/interrupts file yields the number of interrupts raised for each
IRQ and the corresponding device’s name.

15 Drivers for character devices February 22, 2006


