
Linux Kernel Hacking Free Course, 3rd edition

R. Gioiosa
University of Rome “Tor Vergata”

Drivers for block devices

March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Index

• How to handle block devices

1 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Index

• How to handle block devices

• Block device data structures

1 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Index

• How to handle block devices

• Block device data structures

• a RAMDISK-based block device driver

1 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Index

• How to handle block devices

• Block device data structures

• a RAMDISK-based block device driver

• Using the RAMDISK block device

1 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Class of devices

From previous lectures:

2 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Class of devices

From previous lectures:

char device Data can be read as byte streams and random accesses are un-
common

2 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Class of devices

From previous lectures:

char device Data can be read as byte streams and random accesses are un-
common

block device slow, disk-like devices in which data can be accessed in blocks;
random accesses are common

2 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device drivers
Block device drivers are, usually, much more complex than character device
drivers because the kernel must somehow speed up the slow disk data transfer.

3 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device drivers
Block device drivers are, usually, much more complex than character device
drivers because the kernel must somehow speed up the slow disk data transfer.

• reads are quick enough only if they are sequential

3 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device drivers
Block device drivers are, usually, much more complex than character device
drivers because the kernel must somehow speed up the slow disk data transfer.

• reads are quick enough only if they are sequential

• seek operations are time consuming because they require to move the disk
heads

3 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device drivers
Block device drivers are, usually, much more complex than character device
drivers because the kernel must somehow speed up the slow disk data transfer.

• reads are quick enough only if they are sequential

• seek operations are time consuming because they require to move the disk
heads

• writes are generally non blocking, so they can be optimized (write back )

3 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device drivers
Block device drivers are, usually, much more complex than character device
drivers because the kernel must somehow speed up the slow disk data transfer.

• reads are quick enough only if they are sequential

• seek operations are time consuming because they require to move the disk
heads

• writes are generally non blocking, so they can be optimized (write back )

• The kernel uses complex data structure (disk cache) and different schedul-
ing algorithms to reduce the disk latency

3 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device drivers
Block device drivers are, usually, much more complex than character device
drivers because the kernel must somehow speed up the slow disk data transfer.

• reads are quick enough only if they are sequential

• seek operations are time consuming because they require to move the disk
heads

• writes are generally non blocking, so they can be optimized (write back )

• The kernel uses complex data structure (disk cache) and different schedul-
ing algorithms to reduce the disk latency

All of these items must be considered when writing a block device driver.

3 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Data unit

Moving single bytes between disk and RAM is expensive, thus groups of bytes
are transfered at once between RAM and disk.

sector Minimum set of bytes that can be transfered or addressed within a single
disk I/O operation (usually 512 bytes)

4 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Data unit

Moving single bytes between disk and RAM is expensive, thus groups of bytes
are transfered at once between RAM and disk.

sector Minimum set of bytes that can be transfered or addressed within a single
disk I/O operation (usually 512 bytes)

block Amount of data that can be transfered within a single VFS operation (be-
tween 512 and page size)

4 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Data unit

Moving single bytes between disk and RAM is expensive, thus groups of bytes
are transfered at once between RAM and disk.

sector Minimum set of bytes that can be transfered or addressed within a single
disk I/O operation (usually 512 bytes)

block Amount of data that can be transfered within a single VFS operation (be-
tween 512 and page size)

page Data into the page cache are stored in pages (4096 bytes)

4 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

5 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device driver operations

A block device driver has to:

6 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device driver operations

A block device driver has to:

1. Provide the file operations used by programs in order to interact with the
block device (open(), release(), ioctl(),...). This is the higher part
of the driver.

6 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device driver operations

A block device driver has to:

1. Provide the file operations used by programs in order to interact with the
block device (open(), release(), ioctl(),...). This is the higher part
of the driver. Note that no read() or write() methods are provided
because they are part of the filesystem interface (ext3, vfat, etc...)

6 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device driver operations

A block device driver has to:

1. Provide the file operations used by programs in order to interact with the
block device (open(), release(), ioctl(),...). This is the higher part
of the driver. Note that no read() or write() methods are provided
because they are part of the filesystem interface (ext3, vfat, etc...)

2. Handle the disk accesses by programming the I/O controller. This is the
lower part of the driver.

6 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Block device driver operations

A block device driver has to:

1. Provide the file operations used by programs in order to interact with the
block device (open(), release(), ioctl(),...). This is the higher part
of the driver. Note that no read() or write() methods are provided
because they are part of the filesystem interface (ext3, vfat, etc...)

2. Handle the disk accesses by programming the I/O controller. This is the
lower part of the driver.

The higher part interfaces with the VFS and with the Generic Block Layer; the
lower part interfaces with the kernel I/O Scheduler and with the hardware.

6 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

7 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: a simple RAMDISK based block device

Now it’s time to implement a virtual block device driver based on a RAMDISK.
The required steps are:

8 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: a simple RAMDISK based block device

Now it’s time to implement a virtual block device driver based on a RAMDISK.
The required steps are:

1. Definition of data structures

8 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: a simple RAMDISK based block device

Now it’s time to implement a virtual block device driver based on a RAMDISK.
The required steps are:

1. Definition of data structures

2. Driver registration

8 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: a simple RAMDISK based block device

Now it’s time to implement a virtual block device driver based on a RAMDISK.
The required steps are:

1. Definition of data structures

2. Driver registration

3. Obtaining a gendisk object

8 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: a simple RAMDISK based block device

Now it’s time to implement a virtual block device driver based on a RAMDISK.
The required steps are:

1. Definition of data structures

2. Driver registration

3. Obtaining a gendisk object

4. Implement the driver’s methods

8 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: a simple RAMDISK based block device

Now it’s time to implement a virtual block device driver based on a RAMDISK.
The required steps are:

1. Definition of data structures

2. Driver registration

3. Obtaining a gendisk object

4. Implement the driver’s methods

5. Handle the request queue

8 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 1, data definition

Bldex has a private data structure where all the information related to the device
are stored.

9 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 1, data definition

Bldex has a private data structure where all the information related to the device
are stored.

struct bldex_desc_t {

int major;

int size_in_sectors;

u8 *data;

int users;

spinlock_t lock;

struct request_queue *queue;

struct gendisk *gd;

};

9 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 2, registration

A block device driver must register itself by specifying a major number and a
name for the disk.

register blkdev(major,name)

10 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 2, registration

A block device driver must register itself by specifying a major number and a
name for the disk.

register blkdev(major,name)

Giving zero as major will allocate the major number dynamically.

10 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 2, registration

A block device driver must register itself by specifying a major number and a
name for the disk.

register blkdev(major,name)

Giving zero as major will allocate the major number dynamically. The function

unregister blkdev()

unregisters the device driver.

10 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Gendisk

Each block device is handled as if it were a disk, independently from its technol-
ogy.

11 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Gendisk

Each block device is handled as if it were a disk, independently from its technol-
ogy.

The gendisk object stores all information related to device handling, such as
the major and minor numbers, the disk capacity, etc.

11 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Gendisk

Each block device is handled as if it were a disk, independently from its technol-
ogy.

The gendisk object stores all information related to device handling, such as
the major and minor numbers, the disk capacity, etc.

From the developer’s point of view, a single gendisk object is required, which
represents the whole disk.

11 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 3, obtaining the gendisk object

The function

alloc disk(max minor)

allocates a new gendisk object for the block device driver.

12 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 3, obtaining the gendisk object

The function

alloc disk(max minor)

allocates a new gendisk object for the block device driver. Then, the new
device must be activated using:

add disk()

12 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 3, obtaining the gendisk object

The function

alloc disk(max minor)

allocates a new gendisk object for the block device driver. Then, the new
device must be activated using:

add disk()

At this point the driver must be ready to handle I/O requests for the disk because
add disk() issues read requests while accessing the partition table.

12 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 4, methods (1)

User programs interact with the block device by means of its file operations; the
driver should provide at least:

13 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 4, methods (1)

User programs interact with the block device by means of its file operations; the
driver should provide at least:

• open(), release()

13 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 4, methods (1)

User programs interact with the block device by means of its file operations; the
driver should provide at least:

• open(), release()

• ioctl() in order to implement all the operations that cannot be imple-
mented as read/write

13 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 4, methods (1)

User programs interact with the block device by means of its file operations; the
driver should provide at least:

• open(), release()

• ioctl() in order to implement all the operations that cannot be imple-
mented as read/write

• media changed(), revalidate disk() if the device can be removed

13 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 4, methods (2)

Furthermore the driver must also implement a transfer function triggered by the
read and write operations.

14 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 4, methods (2)

Furthermore the driver must also implement a transfer function triggered by the
read and write operations.

All these methods are stored into a block device operations table that
can be accessed by the fops field into the gendisk object.

14 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (1)
I/O requests are queued into the block device request queue, ordered by disk
sector position.

15 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (1)
I/O requests are queued into the block device request queue, ordered by disk
sector position. When attempting to insert a new I/O request, the request queue
is examined:

1. if there is already a request that can be merged with the new one, the old
request is enlarged so that both the old and the new request will be handled
together.

15 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (1)
I/O requests are queued into the block device request queue, ordered by disk
sector position. When attempting to insert a new I/O request, the request queue
is examined:

1. if there is already a request that can be merged with the new one, the old
request is enlarged so that both the old and the new request will be handled
together.

2. if there is no request that can be enlarged, a new request is added to the
queue.

15 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (1)
I/O requests are queued into the block device request queue, ordered by disk
sector position. When attempting to insert a new I/O request, the request queue
is examined:

1. if there is already a request that can be merged with the new one, the old
request is enlarged so that both the old and the new request will be handled
together.

2. if there is no request that can be enlarged, a new request is added to the
queue.

A request must be refer to contiguous disk sectors however it may encompass
scattered data buffers in memory.

15 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (2)

Each request in the request queue is a struct request table that stores lot
of information,

16 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (2)

Each request in the request queue is a struct request table that stores lot
of information, for instance:

• the current sector (i.e., the next sector that will be transfered)

16 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (2)

Each request in the request queue is a struct request table that stores lot
of information, for instance:

• the current sector (i.e., the next sector that will be transfered)

• how many sectors can be transfered together with the current sector (all
these sectors are related to the same buffer in RAM)

16 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (2)

Each request in the request queue is a struct request table that stores lot
of information, for instance:

• the current sector (i.e., the next sector that will be transfered)

• how many sectors can be transfered together with the current sector (all
these sectors are related to the same buffer in RAM)

• the memory address where data have to be written (read()) or read (write())

16 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (2)

Each request in the request queue is a struct request table that stores lot
of information, for instance:

• the current sector (i.e., the next sector that will be transfered)

• how many sectors can be transfered together with the current sector (all
these sectors are related to the same buffer in RAM)

• the memory address where data have to be written (read()) or read (write())

• the transfer direction (to/from the disk)

16 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 5, the strategy routine

A strategy routine handles the request stored in the device request queue;

17 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 5, the strategy routine

A strategy routine handles the request stored in the device request queue; this
routine is provided when the queue is allocated:

blk init queue(routine,spin lock)

The spin lock is used by the strategy routine to lock the queue when fetching
the next request to be served.

17 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 5, the strategy routine

A strategy routine handles the request stored in the device request queue; this
routine is provided when the queue is allocated:

blk init queue(routine,spin lock)

The spin lock is used by the strategy routine to lock the queue when fetching
the next request to be served.

Strategy routines are usually based on the elevator strategy: once a transfer has
started in one direction, further requests in the same direction will be privileged.

17 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Bldex: step 5, the strategy routine

A strategy routine handles the request stored in the device request queue; this
routine is provided when the queue is allocated:

blk init queue(routine,spin lock)

The spin lock is used by the strategy routine to lock the queue when fetching
the next request to be served.

Strategy routines are usually based on the elevator strategy: once a transfer has
started in one direction, further requests in the same direction will be privileged.

The function blk cleanup queue() removes the request queue.

17 Drivers for block devices March 22, 2006


