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Class of devices

From previous lectures:

char device Data can be read as byte streams and random accesses are un-
common

block device slow, disk-like devices in which data can be accessed in blocks;
random accesses are common
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Block device drivers
Block device drivers are, usually, much more complex than character device
drivers because the kernel must somehow speed up the slow disk data transfer.
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Block device drivers
Block device drivers are, usually, much more complex than character device
drivers because the kernel must somehow speed up the slow disk data transfer.

• reads are quick enough only if they are sequential

• seek operations are time consuming because they require to move the disk
heads

• writes are generally non blocking, so they can be optimized (write back )

• The kernel uses complex data structure (disk cache) and different schedul-
ing algorithms to reduce the disk latency

All of these items must be considered when writing a block device driver.
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Data unit

Moving single bytes between disk and RAM is expensive, thus groups of bytes
are transfered at once between RAM and disk.

sector Minimum set of bytes that can be transfered or addressed within a single
disk I/O operation (usually 512 bytes)
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Data unit

Moving single bytes between disk and RAM is expensive, thus groups of bytes
are transfered at once between RAM and disk.

sector Minimum set of bytes that can be transfered or addressed within a single
disk I/O operation (usually 512 bytes)

block Amount of data that can be transfered within a single VFS operation (be-
tween 512 and page size)

page Data into the page cache are stored in pages (4096 bytes)
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Block device driver operations

A block device driver has to:

1. Provide the file operations used by programs in order to interact with the
block device (open(), release(), ioctl(),...). This is the higher part
of the driver. Note that no read() or write() methods are provided
because they are part of the filesystem interface (ext3, vfat, etc...)

2. Handle the disk accesses by programming the I/O controller. This is the
lower part of the driver.

The higher part interfaces with the VFS and with the Generic Block Layer; the
lower part interfaces with the kernel I/O Scheduler and with the hardware.
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Bldex: a simple RAMDISK based block device

Now it’s time to implement a virtual block device driver based on a RAMDISK.
The required steps are:
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Bldex: a simple RAMDISK based block device

Now it’s time to implement a virtual block device driver based on a RAMDISK.
The required steps are:

1. Definition of data structures

2. Driver registration

3. Obtaining a gendisk object

4. Implement the driver’s methods

5. Handle the request queue
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Bldex: step 1, data definition

Bldex has a private data structure where all the information related to the device
are stored.
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Bldex: step 1, data definition

Bldex has a private data structure where all the information related to the device
are stored.

struct bldex_desc_t {

int major;

int size_in_sectors;

u8 *data;

int users;

spinlock_t lock;

struct request_queue *queue;

struct gendisk *gd;

};
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Bldex: step 2, registration

A block device driver must register itself by specifying a major number and a
name for the disk.

register blkdev(major,name)
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Bldex: step 2, registration

A block device driver must register itself by specifying a major number and a
name for the disk.

register blkdev(major,name)

Giving zero as major will allocate the major number dynamically. The function

unregister blkdev()

unregisters the device driver.
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Gendisk

Each block device is handled as if it were a disk, independently from its technol-
ogy.
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Gendisk

Each block device is handled as if it were a disk, independently from its technol-
ogy.

The gendisk object stores all information related to device handling, such as
the major and minor numbers, the disk capacity, etc.

From the developer’s point of view, a single gendisk object is required, which
represents the whole disk.
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Bldex: step 3, obtaining the gendisk object

The function

alloc disk(max minor)

allocates a new gendisk object for the block device driver.
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Bldex: step 3, obtaining the gendisk object

The function

alloc disk(max minor)

allocates a new gendisk object for the block device driver. Then, the new
device must be activated using:

add disk()

At this point the driver must be ready to handle I/O requests for the disk because
add disk() issues read requests while accessing the partition table.
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Bldex: step 4, methods (1)

User programs interact with the block device by means of its file operations; the
driver should provide at least:
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Bldex: step 4, methods (1)

User programs interact with the block device by means of its file operations; the
driver should provide at least:

• open(), release()

• ioctl() in order to implement all the operations that cannot be imple-
mented as read/write

• media changed(), revalidate disk() if the device can be removed
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Bldex: step 4, methods (2)

Furthermore the driver must also implement a transfer function triggered by the
read and write operations.
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Bldex: step 4, methods (2)

Furthermore the driver must also implement a transfer function triggered by the
read and write operations.

All these methods are stored into a block device operations table that
can be accessed by the fops field into the gendisk object.

14 Drivers for block devices March 22, 2006



Linux Kernel Hacking Free Course, 3rd edition

Request queue (1)
I/O requests are queued into the block device request queue, ordered by disk
sector position.
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together.
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sector position. When attempting to insert a new I/O request, the request queue
is examined:

1. if there is already a request that can be merged with the new one, the old
request is enlarged so that both the old and the new request will be handled
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Request queue (1)
I/O requests are queued into the block device request queue, ordered by disk
sector position. When attempting to insert a new I/O request, the request queue
is examined:

1. if there is already a request that can be merged with the new one, the old
request is enlarged so that both the old and the new request will be handled
together.

2. if there is no request that can be enlarged, a new request is added to the
queue.

A request must be refer to contiguous disk sectors however it may encompass
scattered data buffers in memory.
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Each request in the request queue is a struct request table that stores lot
of information,
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Request queue (2)

Each request in the request queue is a struct request table that stores lot
of information, for instance:

• the current sector (i.e., the next sector that will be transfered)

• how many sectors can be transfered together with the current sector (all
these sectors are related to the same buffer in RAM)

• the memory address where data have to be written (read()) or read (write())

• the transfer direction (to/from the disk)
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Bldex: step 5, the strategy routine

A strategy routine handles the request stored in the device request queue;
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A strategy routine handles the request stored in the device request queue; this
routine is provided when the queue is allocated:

blk init queue(routine,spin lock)

The spin lock is used by the strategy routine to lock the queue when fetching
the next request to be served.
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blk init queue(routine,spin lock)
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Strategy routines are usually based on the elevator strategy: once a transfer has
started in one direction, further requests in the same direction will be privileged.
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Bldex: step 5, the strategy routine

A strategy routine handles the request stored in the device request queue; this
routine is provided when the queue is allocated:

blk init queue(routine,spin lock)

The spin lock is used by the strategy routine to lock the queue when fetching
the next request to be served.

Strategy routines are usually based on the elevator strategy: once a transfer has
started in one direction, further requests in the same direction will be privileged.

The function blk cleanup queue() removes the request queue.
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